Local limit theorem for joint subgraph counts

Extending a previous result of the first two authors, we prove a local limit theorem for the joint distribution of subgraph counts in the Erdős-R\'{e}nyi random graph \(G(n,p)\). This limit can be described as a nonlinear transformation of a multivariate normal distribution, where the component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Sah, Ashwin, Sawhney, Mehtaab, Zhu, Daniel G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extending a previous result of the first two authors, we prove a local limit theorem for the joint distribution of subgraph counts in the Erdős-R\'{e}nyi random graph \(G(n,p)\). This limit can be described as a nonlinear transformation of a multivariate normal distribution, where the components of the multivariate normal correspond to the graph factors of Janson. As an application, we show a number of results concerning the existence and enumeration of proportional graphs and related concepts, answering various questions of Janson and collaborators in the affirmative.
ISSN:2331-8422