Local limit theorem for joint subgraph counts
Extending a previous result of the first two authors, we prove a local limit theorem for the joint distribution of subgraph counts in the Erdős-R\'{e}nyi random graph \(G(n,p)\). This limit can be described as a nonlinear transformation of a multivariate normal distribution, where the component...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extending a previous result of the first two authors, we prove a local limit theorem for the joint distribution of subgraph counts in the Erdős-R\'{e}nyi random graph \(G(n,p)\). This limit can be described as a nonlinear transformation of a multivariate normal distribution, where the components of the multivariate normal correspond to the graph factors of Janson. As an application, we show a number of results concerning the existence and enumeration of proportional graphs and related concepts, answering various questions of Janson and collaborators in the affirmative. |
---|---|
ISSN: | 2331-8422 |