A Repetitive Acipenser gueldenstaedtii Genomic Region Aligning with the Acipenser baerii IGLV Gene Cluster Suggests a Role as a Transcription Termination Element Across Several Sturgeon Species

This study focuses on the common presence of repetitive sequences within the sturgeon genome that may contribute to enhanced immune responses against infectious diseases. A repetitive 675 bp VAC-2M sequence in Russian sturgeon DNA that aligns with the Siberian sturgeon IGLV gene cluster was identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-12, Vol.25 (23), p.12685
Hauptverfasser: Chouljenko, Alexander V, Stanfield, Brent A, Melnyk, Tetiana O, Dutta, Ojasvi, Chouljenko, Vladimir N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focuses on the common presence of repetitive sequences within the sturgeon genome that may contribute to enhanced immune responses against infectious diseases. A repetitive 675 bp VAC-2M sequence in Russian sturgeon DNA that aligns with the Siberian sturgeon IGLV gene cluster was identified. A specific 218 bp long portion of the sequence was found to be identical between , and species, and NCBI blast analysis confirmed the presence of this DNA segment in the genome. Multiple mutated copies of the same genomic region were detected by PCR analysis, indicating that different versions of this highly repetitive sequence exist simultaneously within the same organism. The selection toward specific genetic differences appears to be highly conserved based on the sequence variations within DNA originating from fish grown at distant geographical regions and individual caviar grains from the same fish. The corresponding genomic region encompassing the 357 bp DNA sequence was cloned either ahead or after the human cytomegalovirus immediate early promoter (HCMV-IE) into a pBV-Luc reporter vector expressing the luciferase gene. The DNA segment significantly reduced luciferase expression in transient transfection/expression experiments. The results indicate that this genomic region functions as a transcription termination element that may affect antibody production in sturgeons.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms252312685