Feasibility of Recovering and Recycling Polymer Composites from End-of-Life Marine Renewable Energy Structures: A Review

Over the last few decades, several marine renewable energy (MRE) technologies, such as wave energy converters (WECs) and current energy converters (CECs), have been developed. As opposed to traditional materials such as metal alloys, the structure of these technologies is made up of polymer and poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-12, Vol.16 (23), p.10515
Hauptverfasser: Elen, Muthu, Kumar, Vishal, Fifield, Leonard S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the last few decades, several marine renewable energy (MRE) technologies, such as wave energy converters (WECs) and current energy converters (CECs), have been developed. As opposed to traditional materials such as metal alloys, the structure of these technologies is made up of polymer and polymer composite materials. Most structures have been made using thermoset polymer composites; however, since thermoset polymer composites are not recyclable and lack sustainability, and with recent innovations in recyclable resins, bio-based resins, and the development of additive manufacturing technologies, thermoplastic polymers are increasingly being used. Nevertheless, the methodologies for identifying end-of-life options and recovering these polymer composites, as well as the recycling and reuse processes for MRE structures, are not well-studied. Specifically, since these MRE structures are subjected to salinity, moisture, varying temperature, biofouling, and corrosion effects depending on their usage, the recyclability after seawater aging and degradation needs to be explored. Hence, this review provides an in-depth review of polymer composites used in marine applications, the hygrothermal aging studies conducted so far to understand the degradation of these materials, and the reuse and recycling methodologies for end-of-life MRE structures, with a particular emphasis on sustainability.
ISSN:2071-1050
2071-1050
DOI:10.3390/su162310515