Peplospheric Influences on Local Greenhouse Gas and Aerosol Variability at the Lamezia Terme WMO/GAW Regional Station in Calabria, Southern Italy: A Multiparameter Investigation

One of the keys towards sustainable policies and advanced air quality monitoring is the detailed assessment of all factors that affect the surface concentrations of greenhouse gases (GHGs) and aerosols. While the development of new atmospheric tracers can pinpoint emission sources, the atmosphere it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-12, Vol.16 (23), p.10175
Hauptverfasser: D’Amico, Francesco, Calidonna, Claudia Roberta, Ammoscato, Ivano, Gullì, Daniel, Malacaria, Luana, Sinopoli, Salvatore, De Benedetto, Giorgia, Lo Feudo, Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the keys towards sustainable policies and advanced air quality monitoring is the detailed assessment of all factors that affect the surface concentrations of greenhouse gases (GHGs) and aerosols. While the development of new atmospheric tracers can pinpoint emission sources, the atmosphere itself plays a relevant role even at local scales: Its dynamics can increase, or reduce, surface concentrations of pollutants harmful to human health and the environment. PBL (planetary boundary layer), or peplospheric, variability is known to affect such concentrations. In this study, an unprecedented characterization of PBL cycles and patterns is performed at the WMO/GAW regional coastal site of Lamezia Terme (code: LMT) in Calabria, Southern Italy, in conjunction with the analysis of key GHGs and aerosols. The analysis, accounting for five months of 2024 data, indicates that peplospheric variability and wind regimes influence the concentrations of key GHGs and aerosols. In particular, PBLH (PBL height) patterns have been tested to further influence the surface concentrations of carbon monoxide (CO), black carbon (BC), and particulate matter (PM). This research introduces four distinct wind regimes at LMT: breeze, not complete breeze, eastern synoptic, and western synoptic, each with its peculiar influences on the local transport of gases and aerosols. This research demonstrates that peplosphere monitoring needs to be considered when ensuring optimal air quality in urban and rural areas.
ISSN:2071-1050
2071-1050
DOI:10.3390/su162310175