Influence of Iron Mining Waste Addition as a Sustainable Alternative on the Resilient and Physical Properties of Soils for Pavement Design
Mining activities generate large volumes of waste, posing environmental and economic challenges, particularly in Brazil’s Quadrilátero Ferrífero region. This study assesses the potential reuse of iron ore waste from Samarco Mineração S.A. in road pavement layers by blending it with phyllite residual...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-12, Vol.16 (23), p.10211 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mining activities generate large volumes of waste, posing environmental and economic challenges, particularly in Brazil’s Quadrilátero Ferrífero region. This study assesses the potential reuse of iron ore waste from Samarco Mineração S.A. in road pavement layers by blending it with phyllite residual soil (PRS) and lateritic clayey soil (LCS). The addition of 50% waste to PRS led to substantial improvements, increasing the resilient modulus (RM) by up to 130% under medium stress and reducing expansibility from 6.1% to 1%, meeting Brazilian standards for sub-base applications. These enhancements make the PRS-waste blend a viable and sustainable option for reinforcing subgrade and sub-base layers. In contrast, the LCS with 20% waste showed moderate RM improvements under high-stress conditions, while higher waste contents reduced stiffness, indicating that higher dosages may adversely affect performance. This study highlights the potential of inert, non-hazardous mining waste as a safe and efficient solution for pavement applications, promoting the sustainable use of discarded materials. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su162310211 |