Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework

Rapid urbanization and changing land use dynamics require robust tools for projecting and analyzing future land use scenarios to support sustainable urban development. This study introduces an integrated modeling framework that combines the Patch-generating Land Use Simulation (PLUS) model with Mark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-12, Vol.16 (23), p.10255
Hauptverfasser: Marey, Ahmed, Wang, Liangzhu (Leon), Goubran, Sherif, Gaur, Abhishek, Lu, Henry, Leroyer, Sylvie, Belair, Stephane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 10255
container_title Sustainability
container_volume 16
creator Marey, Ahmed
Wang, Liangzhu (Leon)
Goubran, Sherif
Gaur, Abhishek
Lu, Henry
Leroyer, Sylvie
Belair, Stephane
description Rapid urbanization and changing land use dynamics require robust tools for projecting and analyzing future land use scenarios to support sustainable urban development. This study introduces an integrated modeling framework that combines the Patch-generating Land Use Simulation (PLUS) model with Markov Chain (MC) analysis to simulate land use and land cover (LULC) changes for Montreal Island, Canada. This framework leverages historical data, scenario-based adjustments, and spatial drivers, providing urban planners and policymakers with a tool to evaluate the potential impacts of land use policies. Three scenarios—sustainable, industrial, and baseline—are developed to illustrate distinct pathways for Montreal’s urban development, each reflecting different policy priorities and economic emphases. The integrated MC-PLUS model achieved a high accuracy level, with an overall accuracy of 0.970 and a Kappa coefficient of 0.963 when validated against actual land use data from 2020. The findings indicate that sustainable policies foster more contiguous green spaces, enhancing ecological connectivity, while industrial-focused policies promote the clustering of commercial and industrial zones, often at the expense of green spaces. This study underscores the model’s potential as a valuable decision-support tool in urban planning, allowing for the scenario-driven exploration of LULC dynamics with high spatial precision. Future applications and enhancements could expand its relevance across diverse urban contexts globally.
doi_str_mv 10.3390/su162310255
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144176840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820018565</galeid><sourcerecordid>A820018565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1745-a08745af4fb80b889191881a42185d4eaa2fa20f6bd4c4972e59ec51e825c0af3</originalsourceid><addsrcrecordid>eNpVkcFOGzEQhldVKxVRTn0BSz2haqnttTdeblFKaKQgUEPOq4l3vDEkNrW9tLxHHxgnQQg8h7F-f_-MPFMUXxk9q6qG_ogDq3nFKJfyQ3HE6YiVjEr68c39c3ES4x3Np6pYw-qj4v_UB9QQk3U9WYYVODIH15FlRPLzycHW6khu18EP_ZrcQNLr8hIdBtgbXtGF3Q6brHlHdtIVhHv_SCZrsI7MXMI-7B_PyZhcDZtky4VGB8F6chOwszrZRyTTAFv868P9l-KTgU3Ek5d8XCynF7eTX-X8-nI2Gc9LzUZClkBVTmCEWSm6UqrJX1KKgeBMyU4gADfAqalXndCiGXGUDWrJUHGpKZjquPh2qPsQ_J8BY2rv_BBcbtlWTAg2qpWgmTo7UD1ssLXO-BRA5-gwT8c7NDbrY8UpzX1rmQ2n7wyZSfgv9TDE2M4Wv9-z3w-sDj7GgKZ9CHYL4alltN2ttX2z1uoZ-9-UOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144176840</pqid></control><display><type>article</type><title>Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Marey, Ahmed ; Wang, Liangzhu (Leon) ; Goubran, Sherif ; Gaur, Abhishek ; Lu, Henry ; Leroyer, Sylvie ; Belair, Stephane</creator><creatorcontrib>Marey, Ahmed ; Wang, Liangzhu (Leon) ; Goubran, Sherif ; Gaur, Abhishek ; Lu, Henry ; Leroyer, Sylvie ; Belair, Stephane</creatorcontrib><description>Rapid urbanization and changing land use dynamics require robust tools for projecting and analyzing future land use scenarios to support sustainable urban development. This study introduces an integrated modeling framework that combines the Patch-generating Land Use Simulation (PLUS) model with Markov Chain (MC) analysis to simulate land use and land cover (LULC) changes for Montreal Island, Canada. This framework leverages historical data, scenario-based adjustments, and spatial drivers, providing urban planners and policymakers with a tool to evaluate the potential impacts of land use policies. Three scenarios—sustainable, industrial, and baseline—are developed to illustrate distinct pathways for Montreal’s urban development, each reflecting different policy priorities and economic emphases. The integrated MC-PLUS model achieved a high accuracy level, with an overall accuracy of 0.970 and a Kappa coefficient of 0.963 when validated against actual land use data from 2020. The findings indicate that sustainable policies foster more contiguous green spaces, enhancing ecological connectivity, while industrial-focused policies promote the clustering of commercial and industrial zones, often at the expense of green spaces. This study underscores the model’s potential as a valuable decision-support tool in urban planning, allowing for the scenario-driven exploration of LULC dynamics with high spatial precision. Future applications and enhancements could expand its relevance across diverse urban contexts globally.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su162310255</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Decision making ; Emissions ; Forecasts and trends ; Geospatial data ; Integrated approach ; Land use ; Markov analysis ; Markov processes ; Probability ; Simulation ; Spatial data ; Sustainable urban development ; Transition rules ; Trends ; Urban development ; Urban land use ; Urban planning</subject><ispartof>Sustainability, 2024-12, Vol.16 (23), p.10255</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1745-a08745af4fb80b889191881a42185d4eaa2fa20f6bd4c4972e59ec51e825c0af3</cites><orcidid>0000-0003-2880-3828 ; 0000-0003-1468-0978 ; 0000-0002-5460-223X ; 0000-0002-0653-3612 ; 0000-0002-2365-0351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marey, Ahmed</creatorcontrib><creatorcontrib>Wang, Liangzhu (Leon)</creatorcontrib><creatorcontrib>Goubran, Sherif</creatorcontrib><creatorcontrib>Gaur, Abhishek</creatorcontrib><creatorcontrib>Lu, Henry</creatorcontrib><creatorcontrib>Leroyer, Sylvie</creatorcontrib><creatorcontrib>Belair, Stephane</creatorcontrib><title>Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework</title><title>Sustainability</title><description>Rapid urbanization and changing land use dynamics require robust tools for projecting and analyzing future land use scenarios to support sustainable urban development. This study introduces an integrated modeling framework that combines the Patch-generating Land Use Simulation (PLUS) model with Markov Chain (MC) analysis to simulate land use and land cover (LULC) changes for Montreal Island, Canada. This framework leverages historical data, scenario-based adjustments, and spatial drivers, providing urban planners and policymakers with a tool to evaluate the potential impacts of land use policies. Three scenarios—sustainable, industrial, and baseline—are developed to illustrate distinct pathways for Montreal’s urban development, each reflecting different policy priorities and economic emphases. The integrated MC-PLUS model achieved a high accuracy level, with an overall accuracy of 0.970 and a Kappa coefficient of 0.963 when validated against actual land use data from 2020. The findings indicate that sustainable policies foster more contiguous green spaces, enhancing ecological connectivity, while industrial-focused policies promote the clustering of commercial and industrial zones, often at the expense of green spaces. This study underscores the model’s potential as a valuable decision-support tool in urban planning, allowing for the scenario-driven exploration of LULC dynamics with high spatial precision. Future applications and enhancements could expand its relevance across diverse urban contexts globally.</description><subject>Accuracy</subject><subject>Decision making</subject><subject>Emissions</subject><subject>Forecasts and trends</subject><subject>Geospatial data</subject><subject>Integrated approach</subject><subject>Land use</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Probability</subject><subject>Simulation</subject><subject>Spatial data</subject><subject>Sustainable urban development</subject><subject>Transition rules</subject><subject>Trends</subject><subject>Urban development</subject><subject>Urban land use</subject><subject>Urban planning</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkcFOGzEQhldVKxVRTn0BSz2haqnttTdeblFKaKQgUEPOq4l3vDEkNrW9tLxHHxgnQQg8h7F-f_-MPFMUXxk9q6qG_ogDq3nFKJfyQ3HE6YiVjEr68c39c3ES4x3Np6pYw-qj4v_UB9QQk3U9WYYVODIH15FlRPLzycHW6khu18EP_ZrcQNLr8hIdBtgbXtGF3Q6brHlHdtIVhHv_SCZrsI7MXMI-7B_PyZhcDZtky4VGB8F6chOwszrZRyTTAFv868P9l-KTgU3Ek5d8XCynF7eTX-X8-nI2Gc9LzUZClkBVTmCEWSm6UqrJX1KKgeBMyU4gADfAqalXndCiGXGUDWrJUHGpKZjquPh2qPsQ_J8BY2rv_BBcbtlWTAg2qpWgmTo7UD1ssLXO-BRA5-gwT8c7NDbrY8UpzX1rmQ2n7wyZSfgv9TDE2M4Wv9-z3w-sDj7GgKZ9CHYL4alltN2ttX2z1uoZ-9-UOg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Marey, Ahmed</creator><creator>Wang, Liangzhu (Leon)</creator><creator>Goubran, Sherif</creator><creator>Gaur, Abhishek</creator><creator>Lu, Henry</creator><creator>Leroyer, Sylvie</creator><creator>Belair, Stephane</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2880-3828</orcidid><orcidid>https://orcid.org/0000-0003-1468-0978</orcidid><orcidid>https://orcid.org/0000-0002-5460-223X</orcidid><orcidid>https://orcid.org/0000-0002-0653-3612</orcidid><orcidid>https://orcid.org/0000-0002-2365-0351</orcidid></search><sort><creationdate>20241201</creationdate><title>Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework</title><author>Marey, Ahmed ; Wang, Liangzhu (Leon) ; Goubran, Sherif ; Gaur, Abhishek ; Lu, Henry ; Leroyer, Sylvie ; Belair, Stephane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1745-a08745af4fb80b889191881a42185d4eaa2fa20f6bd4c4972e59ec51e825c0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Decision making</topic><topic>Emissions</topic><topic>Forecasts and trends</topic><topic>Geospatial data</topic><topic>Integrated approach</topic><topic>Land use</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Probability</topic><topic>Simulation</topic><topic>Spatial data</topic><topic>Sustainable urban development</topic><topic>Transition rules</topic><topic>Trends</topic><topic>Urban development</topic><topic>Urban land use</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marey, Ahmed</creatorcontrib><creatorcontrib>Wang, Liangzhu (Leon)</creatorcontrib><creatorcontrib>Goubran, Sherif</creatorcontrib><creatorcontrib>Gaur, Abhishek</creatorcontrib><creatorcontrib>Lu, Henry</creatorcontrib><creatorcontrib>Leroyer, Sylvie</creatorcontrib><creatorcontrib>Belair, Stephane</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marey, Ahmed</au><au>Wang, Liangzhu (Leon)</au><au>Goubran, Sherif</au><au>Gaur, Abhishek</au><au>Lu, Henry</au><au>Leroyer, Sylvie</au><au>Belair, Stephane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework</atitle><jtitle>Sustainability</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>10255</spage><pages>10255-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Rapid urbanization and changing land use dynamics require robust tools for projecting and analyzing future land use scenarios to support sustainable urban development. This study introduces an integrated modeling framework that combines the Patch-generating Land Use Simulation (PLUS) model with Markov Chain (MC) analysis to simulate land use and land cover (LULC) changes for Montreal Island, Canada. This framework leverages historical data, scenario-based adjustments, and spatial drivers, providing urban planners and policymakers with a tool to evaluate the potential impacts of land use policies. Three scenarios—sustainable, industrial, and baseline—are developed to illustrate distinct pathways for Montreal’s urban development, each reflecting different policy priorities and economic emphases. The integrated MC-PLUS model achieved a high accuracy level, with an overall accuracy of 0.970 and a Kappa coefficient of 0.963 when validated against actual land use data from 2020. The findings indicate that sustainable policies foster more contiguous green spaces, enhancing ecological connectivity, while industrial-focused policies promote the clustering of commercial and industrial zones, often at the expense of green spaces. This study underscores the model’s potential as a valuable decision-support tool in urban planning, allowing for the scenario-driven exploration of LULC dynamics with high spatial precision. Future applications and enhancements could expand its relevance across diverse urban contexts globally.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su162310255</doi><orcidid>https://orcid.org/0000-0003-2880-3828</orcidid><orcidid>https://orcid.org/0000-0003-1468-0978</orcidid><orcidid>https://orcid.org/0000-0002-5460-223X</orcidid><orcidid>https://orcid.org/0000-0002-0653-3612</orcidid><orcidid>https://orcid.org/0000-0002-2365-0351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-12, Vol.16 (23), p.10255
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3144176840
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Decision making
Emissions
Forecasts and trends
Geospatial data
Integrated approach
Land use
Markov analysis
Markov processes
Probability
Simulation
Spatial data
Sustainable urban development
Transition rules
Trends
Urban development
Urban land use
Urban planning
title Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Urban%20Land%20Use%20Dynamics%20Through%20Patch-Generating%20Land%20Use%20Simulation%20and%20Markov%20Chain%20Integration:%20A%20Multi-Scenario%20Predictive%20Framework&rft.jtitle=Sustainability&rft.au=Marey,%20Ahmed&rft.date=2024-12-01&rft.volume=16&rft.issue=23&rft.spage=10255&rft.pages=10255-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su162310255&rft_dat=%3Cgale_proqu%3EA820018565%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144176840&rft_id=info:pmid/&rft_galeid=A820018565&rfr_iscdi=true