Forecasting Urban Land Use Dynamics Through Patch-Generating Land Use Simulation and Markov Chain Integration: A Multi-Scenario Predictive Framework

Rapid urbanization and changing land use dynamics require robust tools for projecting and analyzing future land use scenarios to support sustainable urban development. This study introduces an integrated modeling framework that combines the Patch-generating Land Use Simulation (PLUS) model with Mark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-12, Vol.16 (23), p.10255
Hauptverfasser: Marey, Ahmed, Wang, Liangzhu (Leon), Goubran, Sherif, Gaur, Abhishek, Lu, Henry, Leroyer, Sylvie, Belair, Stephane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid urbanization and changing land use dynamics require robust tools for projecting and analyzing future land use scenarios to support sustainable urban development. This study introduces an integrated modeling framework that combines the Patch-generating Land Use Simulation (PLUS) model with Markov Chain (MC) analysis to simulate land use and land cover (LULC) changes for Montreal Island, Canada. This framework leverages historical data, scenario-based adjustments, and spatial drivers, providing urban planners and policymakers with a tool to evaluate the potential impacts of land use policies. Three scenarios—sustainable, industrial, and baseline—are developed to illustrate distinct pathways for Montreal’s urban development, each reflecting different policy priorities and economic emphases. The integrated MC-PLUS model achieved a high accuracy level, with an overall accuracy of 0.970 and a Kappa coefficient of 0.963 when validated against actual land use data from 2020. The findings indicate that sustainable policies foster more contiguous green spaces, enhancing ecological connectivity, while industrial-focused policies promote the clustering of commercial and industrial zones, often at the expense of green spaces. This study underscores the model’s potential as a valuable decision-support tool in urban planning, allowing for the scenario-driven exploration of LULC dynamics with high spatial precision. Future applications and enhancements could expand its relevance across diverse urban contexts globally.
ISSN:2071-1050
2071-1050
DOI:10.3390/su162310255