Bibliometric Analysis of Research on the Effects of Conservation Management on Soil Water Content Using CiteSpace

As global climate change intensifies and population growth continues, water scarcity has emerged as a critical constraint to sustainable agricultural development. Conservation management, an effective water-saving technique, plays a crucial role in enhancing soil water content (SWC) and promoting su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-12, Vol.16 (23), p.3415
Hauptverfasser: Du, Can, Wu, Yuexi, Ma, Limei, Lei, Dong, Yuan, Yin, Ren, Xiaohua, Wang, Qianfeng, Jian, Jinshi, Du, Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As global climate change intensifies and population growth continues, water scarcity has emerged as a critical constraint to sustainable agricultural development. Conservation management, an effective water-saving technique, plays a crucial role in enhancing soil water content (SWC) and promoting sustainable agriculture. This study utilizes CiteSpace to perform a bibliometric analysis of research literature on the effects of conservation management on SWC, encompassing publications indexed in the Web of Science database from 1992 to 2024. By systematically examining 599 papers, we analyzed key research institutions, authors’ collaborative contributions, keyword co-occurrences, and shifts in research hotspots related to conservation management and its impact on SWC. The results reveal that significant topics in this field include “conservation agriculture”, “water use efficiency”, and “conservation tillage”. China (225, 38%) and the United States (129, 22%) lead in publication volume, whereas European countries and institutions show a higher degree of collaboration. The research focus has transitioned from examining the impacts and mechanisms of conservation tillage on crop yield and soil physical and chemical properties to long-term monitoring, water use efficiency, and mitigation. Furthermore, keyword co-occurrence and temporal analysis highlight a growing emphasis on soil quality and greenhouse gas emissions. In the future, it remains imperative to enhance the implementation of automated monitoring systems, secure long-term continuous monitoring data, promote conservation agriculture technology, and bolster the early warning network for extreme climate events. These measures are crucial for preserving soil nutrient levels and ensuring the sustainable development of agriculture.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16233415