Göttingen Minipigs as a Model for Assessing the Impact of Drugs on the Gut and Milk Microbiota—A Preliminary Study

Background: Early gut microbiota (GM) dysbiosis can affect a child’s health and has been linked to the onset of pathologies later in life. Breast milk is recognized as a major driver of the structure and dynamics of an infant’s GM. In addition to nutritious and prebiotic compounds, milk contains a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2024-11, Vol.16 (23), p.4060
Hauptverfasser: Bencivenni, Silvia, Brigidi, Patrizia, Zannoni, Augusta, Ventrella, Domenico, Elmi, Alberto, Bacci, Maria Laura, Forni, Monica, D’Amico, Federica, Turroni, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Early gut microbiota (GM) dysbiosis can affect a child’s health and has been linked to the onset of pathologies later in life. Breast milk is recognized as a major driver of the structure and dynamics of an infant’s GM. In addition to nutritious and prebiotic compounds, milk contains a microbiota that is shaped by several maternal factors, including gut microorganisms and medications. However, the impact of the latter on the milk microbiota is still largely unknown. Here, we investigated the effects of amoxicillin on the milk microbiota and GM of lactating Göttingen Minipigs sows, a promising model for studying medication transfer during lactation. Methods: Three sows were given amoxicillin (7 mg/kg/day) for three weeks starting from the second week after farrowing. Fecal and milk samples were collected before and after treatment and profiled by 16S rRNA amplicon sequencing. Results: Göttingen Minipigs’ milk microbiota showed similarities to that of humans and conventional sows, with minor compositional shifts after treatment. At the genus level, we observed a decrease in Staphylococcus and o_Bacteroidales;Other;Other, and an increasing trend in the abundance of Streptococcus, Stenotrophomonas, f_Rhodobacteraceae;Other, Proteiniclasticum, f_Propionibacteriaceae;Other and Gemella. In contrast, as expected, the GM was strongly affected by amoxicillin, even at the phylum level. Conclusions: In addition to demonstrating the relevance of Göttingen Minipigs as a valid model for studying the impact of medications on maternal milk and GM, our findings suggest that the milk microbiota may be more stable during antibiotic treatment than the GM.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu16234060