Optimized AI Methods for Rapid Crack Detection in Microscopy Images

Detecting structural cracks is critical for quality control and maintenance of industrial materials, ensuring their safety and extending service life. This study enhances the automation and accuracy of crack detection in microscopic images using advanced image processing and deep learning techniques...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-12, Vol.13 (23), p.4824
Hauptverfasser: Lou, Chenxukun, Tinsley, Lawrence, Duarte Ma, Gray, Simon, Honarvar Shakibaei Asli, Barmak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting structural cracks is critical for quality control and maintenance of industrial materials, ensuring their safety and extending service life. This study enhances the automation and accuracy of crack detection in microscopic images using advanced image processing and deep learning techniques, particularly the YOLOv8 model. A comprehensive review of relevant literature was carried out to compare traditional image-processing methods with modern machine-learning approaches. The YOLOv8 model was optimized by incorporating the Wise Intersection over Union (WIoU) loss function and the bidirectional feature pyramid network (BiFPN) technique, achieving precise detection results with mean average precision (mAP@0.5) of 0.895 and a precision rate of 0.859, demonstrating its superiority in detecting fine cracks even in complex and noisy backgrounds. Experimental findings confirmed the model’s high accuracy in identifying cracks, even under challenging conditions. Despite these advancements, detecting very small or overlapping cracks in complex backgrounds remains challenging. Our future work will focus on optimizing and extending the model’s generalisation capabilities. The findings of this study provide a solid foundation for automatic and rapid crack detection in industrial applications and indicate potential for broader applications across various fields.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13234824