Deep Learning–based Measurement of Planetary Radial Velocities in the Presence of Stellar Variability

We present a deep learning–based approach for measuring small planetary radial velocities (RVs) in the presence of stellar variability. We use neural networks to reduce stellar RV jitter in 3 years of HARPS-N Sun-as-a-star spectra. We develop and compare dimensionality-reduction and data-splitting m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2025-01, Vol.169 (1), p.24
Hauptverfasser: Colwell, Ian, Timmaraju, Virisha, Venkataram, Hamsa Shwetha, Wise, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a deep learning–based approach for measuring small planetary radial velocities (RVs) in the presence of stellar variability. We use neural networks to reduce stellar RV jitter in 3 years of HARPS-N Sun-as-a-star spectra. We develop and compare dimensionality-reduction and data-splitting methods, as well as various neural network architectures including single-line convolutional neural networks (CNNs), an ensemble of single-line CNNs, and a multiline CNN. We inject planet-like RVs into the spectra and use the network to recover them. We find that the multiline CNN approach is able to recover 50 day period planets with 0.2 m s −1 semiamplitude, with 8.8% error in the amplitude, compared to 80% error in the amplitude using a traditional cross-correlation function approach. This approach shows promise for mitigating stellar RV variability and enabling the detection of small planetary RVs with unprecedented precision.
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/ad8a65