Wave interactions and fracture evolution in a thin glass plate under impact: a combined experimental and peridynamic analysis

We perform experiments and peridynamic simulations to understand the evolution of cracks in a thin glass plate, backed by a polycarbonate plate, impacted by a small projectile at 150 m/s. We use the peridynamic model to investigate how various types of crack systems are generated by the impact event...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2024-12, Vol.248 (1-3), p.309-352
Hauptverfasser: Wang, Yenan, Yen, Chian-Fong, Yu, Jian, Wright, Jared, Bobaru, Florin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We perform experiments and peridynamic simulations to understand the evolution of cracks in a thin glass plate, backed by a polycarbonate plate, impacted by a small projectile at 150 m/s. We use the peridynamic model to investigate how various types of crack systems are generated by the impact event and how they evolve in time. The detailed investigations of wave interactions and the different cracks and failure types they generate, performed using the peridynamic model, are unique. Post-mortem analysis of glass fragments allows comparisons with the computational results in terms of the kind and location of crack systems. Fractography results provide information about the growth direction for some of the edge cracks and the peridynamic results are used to explain the particular wave interactions leading to the observed behavior. The model captures, in an average sense, some wispy/very fine cracks (surface roughness) experimentally observed on fragments coming from the ends of the Hertzian-cone crack. This is the first attempt at using a computational model to predict the fine details and complex mechanisms of the origin and time evolution of fracture and full fragmentation in a glass plate from impact.
ISSN:0376-9429
1573-2673
DOI:10.1007/s10704-024-00813-3