An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC
In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we fo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rameshwar, V Arvind Lalitha, V |
description | In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143450258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143450258</sourcerecordid><originalsourceid>FETCH-proquest_journals_31434502583</originalsourceid><addsrcrecordid>eNqNi80KgkAUhYcgSMp3uNBaGGe03KoZbaLoZ9FKNMdShrk24wS9fRY9QKtzDt_5RsRhnPteFDA2Ia4xLaWULZYsDLlDLrGCc9cJDQlaVQEq6O8CMq1Rw15jWZSNbPoXYA2HfQwrccWqUbfvFqLytlbKwU6xEgZ2z6F-_OSYzsi4LqQR7i-nZL7OTunG6zQ-rDB93qLVakA59wMehJSFEf_v9Qah_D_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143450258</pqid></control><display><type>article</type><title>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</title><source>Free E- Journals</source><creator>Rameshwar, V Arvind ; Lalitha, V</creator><creatorcontrib>Rameshwar, V Arvind ; Lalitha, V</creatorcontrib><description>In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decoding ; Error analysis ; Estimates ; Maximum likelihood decoding ; Maximum likelihood estimates ; Upper bounds</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rameshwar, V Arvind</creatorcontrib><creatorcontrib>Lalitha, V</creatorcontrib><title>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</title><title>arXiv.org</title><description>In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).</description><subject>Decoding</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimates</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi80KgkAUhYcgSMp3uNBaGGe03KoZbaLoZ9FKNMdShrk24wS9fRY9QKtzDt_5RsRhnPteFDA2Ia4xLaWULZYsDLlDLrGCc9cJDQlaVQEq6O8CMq1Rw15jWZSNbPoXYA2HfQwrccWqUbfvFqLytlbKwU6xEgZ2z6F-_OSYzsi4LqQR7i-nZL7OTunG6zQ-rDB93qLVakA59wMehJSFEf_v9Qah_D_L</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Rameshwar, V Arvind</creator><creator>Lalitha, V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241211</creationdate><title>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</title><author>Rameshwar, V Arvind ; Lalitha, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31434502583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decoding</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimates</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Rameshwar, V Arvind</creatorcontrib><creatorcontrib>Lalitha, V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rameshwar, V Arvind</au><au>Lalitha, V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</atitle><jtitle>arXiv.org</jtitle><date>2024-12-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3143450258 |
source | Free E- Journals |
subjects | Decoding Error analysis Estimates Maximum likelihood decoding Maximum likelihood estimates Upper bounds |
title | An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Upper%20Bound%20on%20the%20Error%20Probability%20of%20RPA%20Decoding%20of%20Reed-Muller%20Codes%20Over%20the%20BSC&rft.jtitle=arXiv.org&rft.au=Rameshwar,%20V%20Arvind&rft.date=2024-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143450258%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143450258&rft_id=info:pmid/&rfr_iscdi=true |