An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC

In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Rameshwar, V Arvind, Lalitha, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rameshwar, V Arvind
Lalitha, V
description In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143450258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143450258</sourcerecordid><originalsourceid>FETCH-proquest_journals_31434502583</originalsourceid><addsrcrecordid>eNqNi80KgkAUhYcgSMp3uNBaGGe03KoZbaLoZ9FKNMdShrk24wS9fRY9QKtzDt_5RsRhnPteFDA2Ia4xLaWULZYsDLlDLrGCc9cJDQlaVQEq6O8CMq1Rw15jWZSNbPoXYA2HfQwrccWqUbfvFqLytlbKwU6xEgZ2z6F-_OSYzsi4LqQR7i-nZL7OTunG6zQ-rDB93qLVakA59wMehJSFEf_v9Qah_D_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143450258</pqid></control><display><type>article</type><title>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</title><source>Free E- Journals</source><creator>Rameshwar, V Arvind ; Lalitha, V</creator><creatorcontrib>Rameshwar, V Arvind ; Lalitha, V</creatorcontrib><description>In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decoding ; Error analysis ; Estimates ; Maximum likelihood decoding ; Maximum likelihood estimates ; Upper bounds</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rameshwar, V Arvind</creatorcontrib><creatorcontrib>Lalitha, V</creatorcontrib><title>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</title><title>arXiv.org</title><description>In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).</description><subject>Decoding</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimates</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi80KgkAUhYcgSMp3uNBaGGe03KoZbaLoZ9FKNMdShrk24wS9fRY9QKtzDt_5RsRhnPteFDA2Ia4xLaWULZYsDLlDLrGCc9cJDQlaVQEq6O8CMq1Rw15jWZSNbPoXYA2HfQwrccWqUbfvFqLytlbKwU6xEgZ2z6F-_OSYzsi4LqQR7i-nZL7OTunG6zQ-rDB93qLVakA59wMehJSFEf_v9Qah_D_L</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Rameshwar, V Arvind</creator><creator>Lalitha, V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241211</creationdate><title>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</title><author>Rameshwar, V Arvind ; Lalitha, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31434502583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decoding</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimates</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Rameshwar, V Arvind</creatorcontrib><creatorcontrib>Lalitha, V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rameshwar, V Arvind</au><au>Lalitha, V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC</atitle><jtitle>arXiv.org</jtitle><date>2024-12-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3143450258
source Free E- Journals
subjects Decoding
Error analysis
Estimates
Maximum likelihood decoding
Maximum likelihood estimates
Upper bounds
title An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Upper%20Bound%20on%20the%20Error%20Probability%20of%20RPA%20Decoding%20of%20Reed-Muller%20Codes%20Over%20the%20BSC&rft.jtitle=arXiv.org&rft.au=Rameshwar,%20V%20Arvind&rft.date=2024-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143450258%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143450258&rft_id=info:pmid/&rfr_iscdi=true