An Upper Bound on the Error Probability of RPA Decoding of Reed-Muller Codes Over the BSC

In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Rameshwar, V Arvind, Lalitha, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we revisit the Recursive Projection-Aggregation (RPA) decoder, of Ye and Abbe (2020), for Reed-Muller (RM) codes. Our main contribution is an explicit upper bound on the probability of incorrect decoding, using the RPA decoder, over a binary symmetric channel (BSC). Importantly, we focus on the events where a single iteration of the RPA decoder, in each recursive call, is sufficient for convergence. Key components of our analysis are explicit estimates of the probability of incorrect decoding of first-order RM codes using a maximum likelihood (ML) decoder, and estimates of the error probabilities during the aggregation phase of the RPA decoder. Our results allow us to show that for RM codes with blocklength \(N = 2^m\), the RPA decoder can achieve vanishing error probabilities, in the large blocklength limit, for RM orders that grow roughly logarithmically in \(m\).
ISSN:2331-8422