Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling
ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routin...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 2024-12, Vol.38 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of chemometrics |
container_volume | 38 |
creator | Korpinsalo, Tuomas Rautavirta, Juhana Huhtala, Sami Reinikainen, Tapani Corander, Jukka |
description | ABSTRACT
Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice. |
doi_str_mv | 10.1002/cem.3630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143406392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143406392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2180-ba79c7e2308475f4ed007d7aaf9bb6fbce39a76251fe3310c86d6d7609102ea33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdNNm-Na_IJd9KDgLaTpxM3SNjXZVfrvzbpePQ3MPLwv8xBySWFGAbIbjd2McQZHZEJBiJRm5fsxmUBZ8lSwkp2SsxA2APHG8gl5u3ce-2B1UrluUN4G1yfOJItuWONWdbbHpFpjZ7VqkxfvjG0xJPWY3KoRg1V9XGJj9dZ-YbJyDbat7T_OyYlRbcCLvzmNPXev1WO6fH54qhbLVGe0hLRWhdAFZgzKvJibHBuAoimUMqKuuak1MqEKns2pQcYo6JI3vCk4CAoZKsam5OqQO3j3ucOwlRu3832slIzmLAfORBap6wOlvQvBo5GDt53yo6Qg99JklCb30iKaHtDv-Of4Lyeru9Uv_wN1-21o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143406392</pqid></control><display><type>article</type><title>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</title><source>Wiley Blackwell Single Titles</source><creator>Korpinsalo, Tuomas ; Rautavirta, Juhana ; Huhtala, Sami ; Reinikainen, Tapani ; Corander, Jukka</creator><creatorcontrib>Korpinsalo, Tuomas ; Rautavirta, Juhana ; Huhtala, Sami ; Reinikainen, Tapani ; Corander, Jukka</creatorcontrib><description>ABSTRACT
Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3630</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Amphetamines ; Bayesian statistics ; Correlation coefficient ; Correlation coefficients ; drug comparison ; forensic chemistry ; Forensic computing ; Gas chromatography ; Mass spectrometry ; Pearson distributions ; Plant layout ; Prediction models ; Samples ; Similarity ; Statistical analysis ; Statistical methods ; statistical modelling ; Statistical models</subject><ispartof>Journal of chemometrics, 2024-12, Vol.38 (12), p.n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2180-ba79c7e2308475f4ed007d7aaf9bb6fbce39a76251fe3310c86d6d7609102ea33</cites><orcidid>0009-0009-4607-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.3630$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.3630$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Korpinsalo, Tuomas</creatorcontrib><creatorcontrib>Rautavirta, Juhana</creatorcontrib><creatorcontrib>Huhtala, Sami</creatorcontrib><creatorcontrib>Reinikainen, Tapani</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><title>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</title><title>Journal of chemometrics</title><description>ABSTRACT
Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.</description><subject>Amphetamines</subject><subject>Bayesian statistics</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>drug comparison</subject><subject>forensic chemistry</subject><subject>Forensic computing</subject><subject>Gas chromatography</subject><subject>Mass spectrometry</subject><subject>Pearson distributions</subject><subject>Plant layout</subject><subject>Prediction models</subject><subject>Samples</subject><subject>Similarity</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>statistical modelling</subject><subject>Statistical models</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdNNm-Na_IJd9KDgLaTpxM3SNjXZVfrvzbpePQ3MPLwv8xBySWFGAbIbjd2McQZHZEJBiJRm5fsxmUBZ8lSwkp2SsxA2APHG8gl5u3ce-2B1UrluUN4G1yfOJItuWONWdbbHpFpjZ7VqkxfvjG0xJPWY3KoRg1V9XGJj9dZ-YbJyDbat7T_OyYlRbcCLvzmNPXev1WO6fH54qhbLVGe0hLRWhdAFZgzKvJibHBuAoimUMqKuuak1MqEKns2pQcYo6JI3vCk4CAoZKsam5OqQO3j3ucOwlRu3832slIzmLAfORBap6wOlvQvBo5GDt53yo6Qg99JklCb30iKaHtDv-Of4Lyeru9Uv_wN1-21o</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Korpinsalo, Tuomas</creator><creator>Rautavirta, Juhana</creator><creator>Huhtala, Sami</creator><creator>Reinikainen, Tapani</creator><creator>Corander, Jukka</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-4607-8261</orcidid></search><sort><creationdate>202412</creationdate><title>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</title><author>Korpinsalo, Tuomas ; Rautavirta, Juhana ; Huhtala, Sami ; Reinikainen, Tapani ; Corander, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2180-ba79c7e2308475f4ed007d7aaf9bb6fbce39a76251fe3310c86d6d7609102ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amphetamines</topic><topic>Bayesian statistics</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>drug comparison</topic><topic>forensic chemistry</topic><topic>Forensic computing</topic><topic>Gas chromatography</topic><topic>Mass spectrometry</topic><topic>Pearson distributions</topic><topic>Plant layout</topic><topic>Prediction models</topic><topic>Samples</topic><topic>Similarity</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>statistical modelling</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korpinsalo, Tuomas</creatorcontrib><creatorcontrib>Rautavirta, Juhana</creatorcontrib><creatorcontrib>Huhtala, Sami</creatorcontrib><creatorcontrib>Reinikainen, Tapani</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korpinsalo, Tuomas</au><au>Rautavirta, Juhana</au><au>Huhtala, Sami</au><au>Reinikainen, Tapani</au><au>Corander, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</atitle><jtitle>Journal of chemometrics</jtitle><date>2024-12</date><risdate>2024</risdate><volume>38</volume><issue>12</issue><epage>n/a</epage><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>ABSTRACT
Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3630</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0009-4607-8261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2024-12, Vol.38 (12), p.n/a |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_proquest_journals_3143406392 |
source | Wiley Blackwell Single Titles |
subjects | Amphetamines Bayesian statistics Correlation coefficient Correlation coefficients drug comparison forensic chemistry Forensic computing Gas chromatography Mass spectrometry Pearson distributions Plant layout Prediction models Samples Similarity Statistical analysis Statistical methods statistical modelling Statistical models |
title | Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20Comparison%20of%20Amphetamine%20Chemical%20Profiles%20by%20Bayesian%20Predictive%20Modelling&rft.jtitle=Journal%20of%20chemometrics&rft.au=Korpinsalo,%20Tuomas&rft.date=2024-12&rft.volume=38&rft.issue=12&rft.epage=n/a&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3630&rft_dat=%3Cproquest_cross%3E3143406392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143406392&rft_id=info:pmid/&rfr_iscdi=true |