Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling

ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2024-12, Vol.38 (12), p.n/a
Hauptverfasser: Korpinsalo, Tuomas, Rautavirta, Juhana, Huhtala, Sami, Reinikainen, Tapani, Corander, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Journal of chemometrics
container_volume 38
creator Korpinsalo, Tuomas
Rautavirta, Juhana
Huhtala, Sami
Reinikainen, Tapani
Corander, Jukka
description ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.
doi_str_mv 10.1002/cem.3630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143406392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143406392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2180-ba79c7e2308475f4ed007d7aaf9bb6fbce39a76251fe3310c86d6d7609102ea33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdNNm-Na_IJd9KDgLaTpxM3SNjXZVfrvzbpePQ3MPLwv8xBySWFGAbIbjd2McQZHZEJBiJRm5fsxmUBZ8lSwkp2SsxA2APHG8gl5u3ce-2B1UrluUN4G1yfOJItuWONWdbbHpFpjZ7VqkxfvjG0xJPWY3KoRg1V9XGJj9dZ-YbJyDbat7T_OyYlRbcCLvzmNPXev1WO6fH54qhbLVGe0hLRWhdAFZgzKvJibHBuAoimUMqKuuak1MqEKns2pQcYo6JI3vCk4CAoZKsam5OqQO3j3ucOwlRu3832slIzmLAfORBap6wOlvQvBo5GDt53yo6Qg99JklCb30iKaHtDv-Of4Lyeru9Uv_wN1-21o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143406392</pqid></control><display><type>article</type><title>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</title><source>Wiley Blackwell Single Titles</source><creator>Korpinsalo, Tuomas ; Rautavirta, Juhana ; Huhtala, Sami ; Reinikainen, Tapani ; Corander, Jukka</creator><creatorcontrib>Korpinsalo, Tuomas ; Rautavirta, Juhana ; Huhtala, Sami ; Reinikainen, Tapani ; Corander, Jukka</creatorcontrib><description>ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.3630</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Amphetamines ; Bayesian statistics ; Correlation coefficient ; Correlation coefficients ; drug comparison ; forensic chemistry ; Forensic computing ; Gas chromatography ; Mass spectrometry ; Pearson distributions ; Plant layout ; Prediction models ; Samples ; Similarity ; Statistical analysis ; Statistical methods ; statistical modelling ; Statistical models</subject><ispartof>Journal of chemometrics, 2024-12, Vol.38 (12), p.n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2180-ba79c7e2308475f4ed007d7aaf9bb6fbce39a76251fe3310c86d6d7609102ea33</cites><orcidid>0009-0009-4607-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.3630$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.3630$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Korpinsalo, Tuomas</creatorcontrib><creatorcontrib>Rautavirta, Juhana</creatorcontrib><creatorcontrib>Huhtala, Sami</creatorcontrib><creatorcontrib>Reinikainen, Tapani</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><title>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</title><title>Journal of chemometrics</title><description>ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.</description><subject>Amphetamines</subject><subject>Bayesian statistics</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>drug comparison</subject><subject>forensic chemistry</subject><subject>Forensic computing</subject><subject>Gas chromatography</subject><subject>Mass spectrometry</subject><subject>Pearson distributions</subject><subject>Plant layout</subject><subject>Prediction models</subject><subject>Samples</subject><subject>Similarity</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>statistical modelling</subject><subject>Statistical models</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdNNm-Na_IJd9KDgLaTpxM3SNjXZVfrvzbpePQ3MPLwv8xBySWFGAbIbjd2McQZHZEJBiJRm5fsxmUBZ8lSwkp2SsxA2APHG8gl5u3ce-2B1UrluUN4G1yfOJItuWONWdbbHpFpjZ7VqkxfvjG0xJPWY3KoRg1V9XGJj9dZ-YbJyDbat7T_OyYlRbcCLvzmNPXev1WO6fH54qhbLVGe0hLRWhdAFZgzKvJibHBuAoimUMqKuuak1MqEKns2pQcYo6JI3vCk4CAoZKsam5OqQO3j3ucOwlRu3832slIzmLAfORBap6wOlvQvBo5GDt53yo6Qg99JklCb30iKaHtDv-Of4Lyeru9Uv_wN1-21o</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Korpinsalo, Tuomas</creator><creator>Rautavirta, Juhana</creator><creator>Huhtala, Sami</creator><creator>Reinikainen, Tapani</creator><creator>Corander, Jukka</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-4607-8261</orcidid></search><sort><creationdate>202412</creationdate><title>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</title><author>Korpinsalo, Tuomas ; Rautavirta, Juhana ; Huhtala, Sami ; Reinikainen, Tapani ; Corander, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2180-ba79c7e2308475f4ed007d7aaf9bb6fbce39a76251fe3310c86d6d7609102ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amphetamines</topic><topic>Bayesian statistics</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>drug comparison</topic><topic>forensic chemistry</topic><topic>Forensic computing</topic><topic>Gas chromatography</topic><topic>Mass spectrometry</topic><topic>Pearson distributions</topic><topic>Plant layout</topic><topic>Prediction models</topic><topic>Samples</topic><topic>Similarity</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>statistical modelling</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korpinsalo, Tuomas</creatorcontrib><creatorcontrib>Rautavirta, Juhana</creatorcontrib><creatorcontrib>Huhtala, Sami</creatorcontrib><creatorcontrib>Reinikainen, Tapani</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korpinsalo, Tuomas</au><au>Rautavirta, Juhana</au><au>Huhtala, Sami</au><au>Reinikainen, Tapani</au><au>Corander, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling</atitle><jtitle>Journal of chemometrics</jtitle><date>2024-12</date><risdate>2024</risdate><volume>38</volume><issue>12</issue><epage>n/a</epage><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cem.3630</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0009-4607-8261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2024-12, Vol.38 (12), p.n/a
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_journals_3143406392
source Wiley Blackwell Single Titles
subjects Amphetamines
Bayesian statistics
Correlation coefficient
Correlation coefficients
drug comparison
forensic chemistry
Forensic computing
Gas chromatography
Mass spectrometry
Pearson distributions
Plant layout
Prediction models
Samples
Similarity
Statistical analysis
Statistical methods
statistical modelling
Statistical models
title Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20Comparison%20of%20Amphetamine%20Chemical%20Profiles%20by%20Bayesian%20Predictive%20Modelling&rft.jtitle=Journal%20of%20chemometrics&rft.au=Korpinsalo,%20Tuomas&rft.date=2024-12&rft.volume=38&rft.issue=12&rft.epage=n/a&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.3630&rft_dat=%3Cproquest_cross%3E3143406392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143406392&rft_id=info:pmid/&rfr_iscdi=true