Forensic Comparison of Amphetamine Chemical Profiles by Bayesian Predictive Modelling

ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2024-12, Vol.38 (12), p.n/a
Hauptverfasser: Korpinsalo, Tuomas, Rautavirta, Juhana, Huhtala, Sami, Reinikainen, Tapani, Corander, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Forensic chemists frequently employ statistical profiling approaches to assess the degree of similarity between samples of illicit drugs. Such profiling information can help reveal connections between nodes in distribution networks and manufacturing laboratories. For amphetamine, the routine method of comparing a pair of samples includes the use of a dissimilarity measure based on the Pearson correlation coefficient calculated between their chemical profiles obtained through gas chromatography–mass spectrometry. This simple measure of (dis)similarity has been shown distinguish pairs sharing a common origin (e.g., same production batch) to a reasonable level of accuracy. However, Pearson correlation fails to capture all the relevant notions of similarity between chemical profiles of amphetamine. We present a new statistical method for forensic drug comparison that uses a more sophisticated statistical modelling approach to determine similarity between samples. We show that this leads to improved performance over the correlation‐based approach. The proposed method is easily extendable and has an intuitive interpretation both from chemistry and forensic perspectives, which supports wide applicability to illicit drug profiling in practice.
ISSN:0886-9383
1099-128X
DOI:10.1002/cem.3630