Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field

We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
1. Verfasser: Baur, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Baur, Matthias
description We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142727961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142727961</sourcerecordid><originalsourceid>FETCH-proquest_journals_31427279613</originalsourceid><addsrcrecordid>eNqNjU0LgkAURYcgSMr_MNBa0Bk_al1Gi6hNe3nYqE_GGXOeBf36DIK2rS6Hey53xjwhZRRsYiEWzHeuDcNQpJlIEumx6jx2asASNL_0hB2-gNAabiueY63MA_So3AepUbyD2ijCku9x2jRaET9Br6FEMPyJ1PDSGkdg6KdWqPRtxeYVaKf8by7Z-pBfd8egH-x9OqCiteNgpqqQUSwykW3TSP5nvQEH-Ueg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142727961</pqid></control><display><type>article</type><title>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</title><source>Free E- Journals</source><creator>Baur, Matthias</creator><creatorcontrib>Baur, Matthias</creatorcontrib><description>We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Magnetic fields ; Magnetic flux ; Optimization</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Baur, Matthias</creatorcontrib><title>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</title><title>arXiv.org</title><description>We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.</description><subject>Eigenvalues</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjU0LgkAURYcgSMr_MNBa0Bk_al1Gi6hNe3nYqE_GGXOeBf36DIK2rS6Hey53xjwhZRRsYiEWzHeuDcNQpJlIEumx6jx2asASNL_0hB2-gNAabiueY63MA_So3AepUbyD2ijCku9x2jRaET9Br6FEMPyJ1PDSGkdg6KdWqPRtxeYVaKf8by7Z-pBfd8egH-x9OqCiteNgpqqQUSwykW3TSP5nvQEH-Ueg</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Baur, Matthias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241209</creationdate><title>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</title><author>Baur, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31427279613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Eigenvalues</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Baur, Matthias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baur, Matthias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</atitle><jtitle>arXiv.org</jtitle><date>2024-12-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3142727961
source Free E- Journals
subjects Eigenvalues
Magnetic fields
Magnetic flux
Optimization
title Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Numerical%20Optimization%20of%20Eigenvalues%20of%20the%20magnetic%20Dirichlet%20Laplacian%20with%20constant%20magnetic%20field&rft.jtitle=arXiv.org&rft.au=Baur,%20Matthias&rft.date=2024-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142727961%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142727961&rft_id=info:pmid/&rfr_iscdi=true