Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field
We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundame...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Baur, Matthias |
description | We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142727961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142727961</sourcerecordid><originalsourceid>FETCH-proquest_journals_31427279613</originalsourceid><addsrcrecordid>eNqNjU0LgkAURYcgSMr_MNBa0Bk_al1Gi6hNe3nYqE_GGXOeBf36DIK2rS6Hey53xjwhZRRsYiEWzHeuDcNQpJlIEumx6jx2asASNL_0hB2-gNAabiueY63MA_So3AepUbyD2ijCku9x2jRaET9Br6FEMPyJ1PDSGkdg6KdWqPRtxeYVaKf8by7Z-pBfd8egH-x9OqCiteNgpqqQUSwykW3TSP5nvQEH-Ueg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142727961</pqid></control><display><type>article</type><title>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</title><source>Free E- Journals</source><creator>Baur, Matthias</creator><creatorcontrib>Baur, Matthias</creatorcontrib><description>We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Magnetic fields ; Magnetic flux ; Optimization</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Baur, Matthias</creatorcontrib><title>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</title><title>arXiv.org</title><description>We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.</description><subject>Eigenvalues</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjU0LgkAURYcgSMr_MNBa0Bk_al1Gi6hNe3nYqE_GGXOeBf36DIK2rS6Hey53xjwhZRRsYiEWzHeuDcNQpJlIEumx6jx2asASNL_0hB2-gNAabiueY63MA_So3AepUbyD2ijCku9x2jRaET9Br6FEMPyJ1PDSGkdg6KdWqPRtxeYVaKf8by7Z-pBfd8egH-x9OqCiteNgpqqQUSwykW3TSP5nvQEH-Ueg</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Baur, Matthias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241209</creationdate><title>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</title><author>Baur, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31427279613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Eigenvalues</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Baur, Matthias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baur, Matthias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field</atitle><jtitle>arXiv.org</jtitle><date>2024-12-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3142727961 |
source | Free E- Journals |
subjects | Eigenvalues Magnetic fields Magnetic flux Optimization |
title | Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Numerical%20Optimization%20of%20Eigenvalues%20of%20the%20magnetic%20Dirichlet%20Laplacian%20with%20constant%20magnetic%20field&rft.jtitle=arXiv.org&rft.au=Baur,%20Matthias&rft.date=2024-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3142727961%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142727961&rft_id=info:pmid/&rfr_iscdi=true |