Numerical Optimization of Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field

We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
1. Verfasser: Baur, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present numerical minimizers for the first seven eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field in a wide range of field strengths. Adapting an approach by Antunes and Freitas, we use gradient descent for the minimization procedure together with the Method of Fundamental solutions for eigenvalue computation. Remarkably, we observe that when the magnetic flux exceeds the index of the target eigenvalue, the minimizer is always a disk.
ISSN:2331-8422