Well/Ill-Posedness of the Boltzmann Equation with Soft Potential

We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in Hs Sobolev space. We find the well/ill-posedness separation at regularity s=d-12, strictly 12-derivative highe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-12, Vol.405 (12), Article 283
Hauptverfasser: Chen, Xuwen, Shen, Shunlin, Zhang, Zhifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in Hs Sobolev space. We find the well/ill-posedness separation at regularity s=d-12, strictly 12-derivative higher than the scaling-invariant index s=d-22, the usually expected separation point.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-024-05157-6