Well/Ill-Posedness of the Boltzmann Equation with Soft Potential
We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in Hs Sobolev space. We find the well/ill-posedness separation at regularity s=d-12, strictly 12-derivative highe...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2024-12, Vol.405 (12), Article 283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Boltzmann equation with the soft potential and angular cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-posedness and ill-posedness in Hs Sobolev space. We find the well/ill-posedness separation at regularity s=d-12, strictly 12-derivative higher than the scaling-invariant index s=d-22, the usually expected separation point. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-024-05157-6 |