On duo, reversible and symmetric group rings
Let RG denote the group ring of the torsion group G over a commutative ring R with identity. In this paper we establish some valid implications between the ring-theoretic conditions duo, reversible, SI property and symmetric in the setting of group rings. We further show that if the group ring RG po...
Gespeichert in:
Veröffentlicht in: | São Paulo Journal of Mathematical Sciences 2024-12, Vol.18 (2), p.1680-1691 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
RG
denote the group ring of the torsion group
G
over a commutative ring
R
with identity. In this paper we establish some valid implications between the ring-theoretic conditions duo, reversible, SI property and symmetric in the setting of group rings. We further show that if the group ring
RG
possesses any of these properties, then
G
is a Hamiltonian group and the characteristic of
R
is either 0 or 2. Moreover, we characterize the same properties in group rings
RG
in the following cases: (1)
RG
is a semi-simple group ring and (2)
R
is a semi-simple ring and
G
any group. We prove new results, but also review previous ones. |
---|---|
ISSN: | 1982-6907 2316-9028 2306-9028 |
DOI: | 10.1007/s40863-024-00437-4 |