On duo, reversible and symmetric group rings

Let RG denote the group ring of the torsion group G over a commutative ring R with identity. In this paper we establish some valid implications between the ring-theoretic conditions duo, reversible, SI property and symmetric in the setting of group rings. We further show that if the group ring RG po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:São Paulo Journal of Mathematical Sciences 2024-12, Vol.18 (2), p.1680-1691
Hauptverfasser: Flórez-Burbano, Brayan S., Holguín-Villa, Alexander, Castillo, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let RG denote the group ring of the torsion group G over a commutative ring R with identity. In this paper we establish some valid implications between the ring-theoretic conditions duo, reversible, SI property and symmetric in the setting of group rings. We further show that if the group ring RG possesses any of these properties, then G is a Hamiltonian group and the characteristic of R is either 0 or 2. Moreover, we characterize the same properties in group rings RG in the following cases: (1) RG is a semi-simple group ring and (2) R is a semi-simple ring and G any group. We prove new results, but also review previous ones.
ISSN:1982-6907
2316-9028
2306-9028
DOI:10.1007/s40863-024-00437-4