Conformal prediction for robust deep nonparametric regression

Conformal prediction is a general method used to convert a point predictor into a prediction band. The accuracy of this prediction band is heavily reliant on the base estimator. This paper is to investigate the use of conformal prediction by least absolute deviation-based deep nonparametric regressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2025-02, Vol.66 (1), p.10, Article 10
Hauptverfasser: Kong, Jingsen, Liu, Yiming, Yang, Guangren, Zhou, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conformal prediction is a general method used to convert a point predictor into a prediction band. The accuracy of this prediction band is heavily reliant on the base estimator. This paper is to investigate the use of conformal prediction by least absolute deviation-based deep nonparametric regression. We demonstrate the consistency of the robust deep regression estimator under mild conditions, leading to the proposed prediction band exhibiting finite-sample marginal validity and asymptotic conditional validity. Through extensive simulation studies and a real-data example, we illustrate the benefits of conformal prediction for robust deep regression.
ISSN:0932-5026
1613-9798
DOI:10.1007/s00362-024-01631-4