Linear Regressions with Combined Data

We study best linear predictions in a context where the outcome of interest and some of the covariates are observed in two different datasets that cannot be matched. Traditional approaches obtain point identification by relying, often implicitly, on exclusion restrictions. We show that without such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: D'Haultfoeuille, Xavier, Gaillac, Christophe, Maurel, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study best linear predictions in a context where the outcome of interest and some of the covariates are observed in two different datasets that cannot be matched. Traditional approaches obtain point identification by relying, often implicitly, on exclusion restrictions. We show that without such restrictions, coefficients of interest can still be partially identified and we derive a constructive characterization of the sharp identified set. We then build on this characterization to develop computationally simple and asymptotically normal estimators of the corresponding bounds. We show that these estimators exhibit good finite sample performances.
ISSN:2331-8422