Linear Regressions with Combined Data
We study best linear predictions in a context where the outcome of interest and some of the covariates are observed in two different datasets that cannot be matched. Traditional approaches obtain point identification by relying, often implicitly, on exclusion restrictions. We show that without such...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study best linear predictions in a context where the outcome of interest and some of the covariates are observed in two different datasets that cannot be matched. Traditional approaches obtain point identification by relying, often implicitly, on exclusion restrictions. We show that without such restrictions, coefficients of interest can still be partially identified and we derive a constructive characterization of the sharp identified set. We then build on this characterization to develop computationally simple and asymptotically normal estimators of the corresponding bounds. We show that these estimators exhibit good finite sample performances. |
---|---|
ISSN: | 2331-8422 |