Lattice Lingo: Effect of Textual Detail on Multimodal Learning for Property Prediction of Crystals
Most prediction models for crystal properties employ a unimodal perspective, with graph-based representations, overlooking important non-local information that affects crystal properties. Some recent studies explore the impact of integrating graph and textual information on crystal property predicti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most prediction models for crystal properties employ a unimodal perspective, with graph-based representations, overlooking important non-local information that affects crystal properties. Some recent studies explore the impact of integrating graph and textual information on crystal property predictions to provide the model with this "missing" information by concatenation of embeddings. However, such studies do not evaluate which type of textual information is actually beneficial. We concatenate graph representations with text representations derived from textual descriptions with varying levels of detail. These descriptions, generated using the Robocrystallographer package, encompass global (e.g., space group, crystal type), local (e.g., bond lengths, coordination environment), and semiglobal (e.g., connectivity, arrangements) information about the structures. Our approach investigates how augmenting graph-based information with various levels of textual detail influences the performance for predictions for shear modulus and bulk modulus. We demonstrate that while graph representations can capture local structural information, incorporating semiglobal textual information enhances model performance the most. Global information can support performance further in the presence of semiglobal information. Our findings suggest that the strategic inclusion of textual information can enhance property prediction, thereby advancing the design and discovery of advanced novel materials for battery electrodes, catalysts, etc. |
---|---|
ISSN: | 2331-8422 |