Pathological Image Segmentation Method Based on Multiscale and Dual Attention

Medical images play a significant part in biomedical diagnosis, but they have a significant feature. The medical images, influenced by factors such as imaging equipment limitations, local volume effect, and others, inevitably exhibit issues like noise, blurred edges, and inconsistent signal strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2024-01, Vol.2024 (1)
Hauptverfasser: Wu, Jia, Niu, Yuxia, Ling, Ziqiang, Zhu, Jun, Gou, Fangfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medical images play a significant part in biomedical diagnosis, but they have a significant feature. The medical images, influenced by factors such as imaging equipment limitations, local volume effect, and others, inevitably exhibit issues like noise, blurred edges, and inconsistent signal strength. These imperfections pose significant challenges and create obstacles for doctors during their diagnostic processes. To address these issues, we present a pathology image segmentation technique based on the multiscale dual attention mechanism (MSDAUnet), which consists of three primary components. Firstly, an image denoising and enhancement module is constructed by using dynamic residual attention and color histogram to remove image noise and improve image clarity. Then, we propose a dual attention module (DAM), which extracts messages from both channel and spatial dimensions, obtains key features, and makes the edge of the lesion area clearer. Finally, capturing multiscale information in the process of image segmentation addresses the issue of uneven signal strength to a certain extent. Each module is combined for automatic pathological image segmentation. Compared with the traditional and typical U‐Net model, MSDAUnet has a better segmentation performance. On the dataset provided by the Research Center for Artificial Intelligence of Monash University, the IOU index is as high as 72.7%, which is nearly 7% higher than that of U‐Net, and the DSC index is 84.9%, which is also about 7% higher than that of U‐Net.
ISSN:0884-8173
1098-111X
DOI:10.1155/int/9987190