Hybrid models for direct normal irradiance forecasting: a case study of Ghardaia zone (Algeria)

This study presents a resilient model for accurately predicting annual solar radiation in Ghardaia, Algeria, utilizing a locally-sourced database. The model integrates temperature, humidity, wind speed, and pressure as inputs. A combination of machine learning and deep learning techniques, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2024-12, Vol.120 (15), p.14703-14725
Hauptverfasser: Ladjal, Boumediene, Tibermacine, Imad Eddine, Bechouat, Mohcene, Sedraoui, Moussa, Napoli, Christian, Rabehi, Abdelaziz, Lalmi, Djemoui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a resilient model for accurately predicting annual solar radiation in Ghardaia, Algeria, utilizing a locally-sourced database. The model integrates temperature, humidity, wind speed, and pressure as inputs. A combination of machine learning and deep learning techniques, including convolutional neural networks and conventional neural networks, are employed to forecast direct normal irradiance and diffuse solar radiation. This comprehensive approach uses multivariate regression analysis, validated with established databases for high-resolution analysis in data-scarce regions. The findings highlight the model’s effectiveness in providing precise forecasts and outline potential applications for optimizing solar energy use in similar climates.
ISSN:0921-030X
1573-0840
DOI:10.1007/s11069-024-06837-1