Twisted right-angled Artin groups embedded in knot groups
Twisted right-angled Artin groups are defined through presentation based on mixed graphs. Each vertex corresponds to a generator, each undirected edge yields a commuting relation and each directed edge gives a Klein bottle relation. If there is no directed edge, then this reduces to an ordinary righ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Twisted right-angled Artin groups are defined through presentation based on mixed graphs. Each vertex corresponds to a generator, each undirected edge yields a commuting relation and each directed edge gives a Klein bottle relation. If there is no directed edge, then this reduces to an ordinary right-angled Artin group. There is a characterization of right-angled Artin groups which can be embedded in knot groups by Katayama. In this paper, we completely determine twisted right-angled Artin groups embedded in knot groups. |
---|---|
ISSN: | 2331-8422 |