Distributed Inference with Minimal Off-Chip Traffic for Transformers on Low-Power MCUs
Contextual Artificial Intelligence (AI) based on emerging Transformer models is predicted to drive the next technology revolution in interactive wearable devices such as new-generation smart glasses. By coupling numerous sensors with small, low-power Micro-Controller Units (MCUs), these devices will...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Contextual Artificial Intelligence (AI) based on emerging Transformer models is predicted to drive the next technology revolution in interactive wearable devices such as new-generation smart glasses. By coupling numerous sensors with small, low-power Micro-Controller Units (MCUs), these devices will enable on-device intelligence and sensor control. A major bottleneck in this class of systems is the small amount of on-chip memory available in the MCUs. In this paper, we propose a methodology to deploy real-world Transformers on low-power wearable devices with minimal off-chip traffic exploiting a distributed system of MCUs, partitioning inference across multiple devices and enabling execution with stationary on-chip weights. We validate the scheme by deploying the TinyLlama-42M decoder-only model on a system of 8 parallel ultra-low-power MCUs. The distributed system achieves an energy consumption of 0.64 mJ, a latency of 0.54 ms per inference, a super-linear speedup of 26.1 x, and an Energy Delay Product (EDP) improvement of 27.2 x, compared to a single-chip system. On MobileBERT, the distributed system's runtime is 38.8 ms, with a super-linear 4.7 x speedup when using 4 MCUs compared to a single-chip system. |
---|---|
ISSN: | 2331-8422 |