On irreducible representations of Fuchsian groups
Let ${\mathcal {R}} \subset \mathbb {P}^1_{\mathbb {C}}$ be a finite subset of markings. Let G be an almost simple simply-connected algebraic group over $\mathbb {C}$ . Let $K_G$ denote the compact real form of G. Suppose for each lasso l around the marked point, a conjugacy class $C_l$ in $K_G$ is...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2024-12, Vol.67 (4), p.970-990 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
${\mathcal {R}} \subset \mathbb {P}^1_{\mathbb {C}}$
be a finite subset of markings. Let G be an almost simple simply-connected algebraic group over
$\mathbb {C}$
. Let
$K_G$
denote the compact real form of G. Suppose for each lasso l around the marked point, a conjugacy class
$C_l$
in
$K_G$
is prescribed. The aim of this paper is to give verifiable criteria for the existence of an irreducible homomorphism of
$\pi _{1}(\mathbb P^1_{\mathbb {C}} \,{\backslash}\, {\mathcal {R}})$
into
$K_G$
such that the image of l lies in
$C_l$
. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/S0008439524000389 |