On irreducible representations of Fuchsian groups

Let ${\mathcal {R}} \subset \mathbb {P}^1_{\mathbb {C}}$ be a finite subset of markings. Let G be an almost simple simply-connected algebraic group over $\mathbb {C}$ . Let $K_G$ denote the compact real form of G. Suppose for each lasso l around the marked point, a conjugacy class $C_l$ in $K_G$ is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2024-12, Vol.67 (4), p.970-990
Hauptverfasser: Balaji, Vikraman, Pandey, Yashonidhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ${\mathcal {R}} \subset \mathbb {P}^1_{\mathbb {C}}$ be a finite subset of markings. Let G be an almost simple simply-connected algebraic group over $\mathbb {C}$ . Let $K_G$ denote the compact real form of G. Suppose for each lasso l around the marked point, a conjugacy class $C_l$ in $K_G$ is prescribed. The aim of this paper is to give verifiable criteria for the existence of an irreducible homomorphism of $\pi _{1}(\mathbb P^1_{\mathbb {C}} \,{\backslash}\, {\mathcal {R}})$ into $K_G$ such that the image of l lies in $C_l$ .
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439524000389