A Space-Time Discontinuous Petrov-Galerkin Finite Element Formulation for a Modified Schrödinger Equation for Laser Pulse Propagation in Waveguides

In this article, we propose a modified nonlinear Schr\"odinger equation for modeling pulse propagation in optical waveguides. The proposed model bifurcates into a system of elliptic and hyperbolic equations depending on waveguide parameters. The proposed model leads to a stable first-order syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Chakraborty, Ankit, Munoz-Matute, Judit, Demkowicz, Leszek, Grosek, Jake
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we propose a modified nonlinear Schr\"odinger equation for modeling pulse propagation in optical waveguides. The proposed model bifurcates into a system of elliptic and hyperbolic equations depending on waveguide parameters. The proposed model leads to a stable first-order system of equations, distinguishing itself from the canonical nonlinear Schr\"odinger equation. We have employed the space-time discontinuous Petrov-Galerkin finite element method to discretize the first-order system of equations. We present a stability analysis for both the elliptic and hyperbolic systems of equations and demonstrate the stability of the proposed model through several numerical examples on space-time meshes.
ISSN:2331-8422