Enlarge the Error Prediction Dataset in 3-D Printing: An Unsupervised Dental Crown Mesh Generator

The quality of the dataset is critical to the performance of neural networks for error prediction in 3-D printing. In order to enlarge the dataset, we propose a customized two-stage framework, cascaded cross-modality generative adversarial networks (CCMGANs), for generating dental crown meshes in an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2024-01, Vol.11 (6), p.7929-7940
Hauptverfasser: Zhao, Meihua, Xiong, Gang, Fang, Qihang, Dong, Xisong, Wang, Fang, Han, Yunjun, Shen, Zhen, Wang, Fei-Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quality of the dataset is critical to the performance of neural networks for error prediction in 3-D printing. In order to enlarge the dataset, we propose a customized two-stage framework, cascaded cross-modality generative adversarial networks (CCMGANs), for generating dental crown meshes in an unsupervised manner. At the first stage, a displacement map-guided generative adversarial network (GAN) is used to generate coarse meshes with diverse shapes. At the second stage, fine-grained details are added to the coarse meshes using an image-based GAN. Unlike previous work that integrates a differentiable renderer into the mesh deformation process directly, we adopt a two-step strategy. First, we use a depth image refinement module to achieve the domain transformation from the rendered depth images of the generated meshes to those of the real ones. Then, we propose a mesh refinement module to optimize the coarse meshes in an image-supervised manner. To alleviate the self-intersection problem, we propose a loss to penalize the distances of point pairs in self-intersection regions. Experimental results show that our method is able to generate highly realistic meshes and outperforms the state-of-the-art point cloud generation method TreeGCN in terms of the metrics FDD, MMD-CD, MMD-EMD, and COV-EMD. Furthermore, we utilize the generated data to augment the original dataset, and demonstrate that the generated data can effectively improve the accuracy of the error prediction task in 3-D printing.
ISSN:2329-924X
2373-7476
DOI:10.1109/TCSS.2024.3417388