Non-perfect (P5,C5,K5-e)-Free Graphs are 5-Colorable

Let G be a graph. We use χ ( G ) and ω ( G ) to denote the chromatic number and clique number of G , respectively. A P 5 is a path on 5 vertices, a C 5 is a cycle on 5 vertices, and a K 5 - e is obtained by removing one edge from K 5 . Chudnovsky and Sivaraman showed that χ ( G ) ≤ 2 ω ( G ) - 1 if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2025-02, Vol.41 (1), Article 3
1. Verfasser: Xu, Yian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph. We use χ ( G ) and ω ( G ) to denote the chromatic number and clique number of G , respectively. A P 5 is a path on 5 vertices, a C 5 is a cycle on 5 vertices, and a K 5 - e is obtained by removing one edge from K 5 . Chudnovsky and Sivaraman showed that χ ( G ) ≤ 2 ω ( G ) - 1 if G is ( P 5 , C 5 ) -free. In this paper, we show that every non-perfect ( P 5 , C 5 , K 5 - e ) -free graph is 5-colorable.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-024-02866-6