Non-perfect (P5,C5,K5-e)-Free Graphs are 5-Colorable
Let G be a graph. We use χ ( G ) and ω ( G ) to denote the chromatic number and clique number of G , respectively. A P 5 is a path on 5 vertices, a C 5 is a cycle on 5 vertices, and a K 5 - e is obtained by removing one edge from K 5 . Chudnovsky and Sivaraman showed that χ ( G ) ≤ 2 ω ( G ) - 1 if...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2025-02, Vol.41 (1), Article 3 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a graph. We use
χ
(
G
)
and
ω
(
G
)
to denote the chromatic number and clique number of
G
, respectively. A
P
5
is a path on 5 vertices, a
C
5
is a cycle on 5 vertices, and a
K
5
-
e
is obtained by removing one edge from
K
5
. Chudnovsky and Sivaraman showed that
χ
(
G
)
≤
2
ω
(
G
)
-
1
if
G
is (
P
5
,
C
5
)
-free. In this paper, we show that every non-perfect
(
P
5
,
C
5
,
K
5
-
e
)
-free graph is 5-colorable. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-024-02866-6 |