Matrix Valued Concomitants of SL2(ℂ)

To a finite dimensional representation of a complex Lie group G , an associative algebra of adjoint covariant polynomial maps from the direct sum of m copies of the Lie algebra g of G into an algebra of complex matrices is associated. When the tangent representation of the given representation is ir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2024, Vol.29 (4), p.1405-1418
1. Verfasser: Domokos, Mátyás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To a finite dimensional representation of a complex Lie group G , an associative algebra of adjoint covariant polynomial maps from the direct sum of m copies of the Lie algebra g of G into an algebra of complex matrices is associated. When the tangent representation of the given representation is irreducible, the center of this algebra of concomitants can be identified with the algebra of adjoint invariant polynomial functions on m -tuples of elements of g . For irreducible finite dimensional representations of SL 2 ( ℂ ) minimal generating systems of the corresponding algebras of concomitants are determined, both as an algebra and as a module over its center.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-022-09745-5