Weighted Divergent Beam Ray Transform: Reconstruction, Unique continuation and Stability
In this article, we establish that any symmetric \(m\)-tensor field can be recovered pointwise from partial data of the \(k\)-th weighted divergent ray transform for any \(k \in \mathbb{Z}^{+} \cup\{0\}\). Using the unique continuation property of the fractional Laplacian, we further prove the uniqu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we establish that any symmetric \(m\)-tensor field can be recovered pointwise from partial data of the \(k\)-th weighted divergent ray transform for any \(k \in \mathbb{Z}^{+} \cup\{0\}\). Using the unique continuation property of the fractional Laplacian, we further prove the unique continuation of the fractional divergent beam ray transform for both vector fields and symmetric 2-tensor fields. Additionally, we derive explicit reconstruction formulas and stability results for vector fields and symmetric 2-tensor fields in terms of fractional divergent beam ray transform data. Finally, we conclude by proving a unique continuation result for the divergent beam ray transform for functions. |
---|---|
ISSN: | 2331-8422 |