FonTS: Text Rendering with Typography and Style Controls
Visual text images are prevalent in various applications, requiring careful font selection and typographic choices. Recent advances in Diffusion Transformer (DiT)-based text-to-image (T2I) models show promise in automating these processes. However, these methods still face challenges such as inconsi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Visual text images are prevalent in various applications, requiring careful font selection and typographic choices. Recent advances in Diffusion Transformer (DiT)-based text-to-image (T2I) models show promise in automating these processes. However, these methods still face challenges such as inconsistent fonts, style variation, and limited fine-grained control, particularly at the word level. This paper proposes a two-stage DiT-based pipeline to address these issues by enhancing controllability over typography and style in text rendering. We introduce Typography Control (TC) finetuning, an efficient parameter fine-tuning method, and enclosing typography control tokens (ETC-tokens), which enable precise word-level application of typographic features. To further enhance style control, we present a Style Control Adapter (SCA) that injects style information through image inputs independent of text prompts. Through comprehensive experiments, we demonstrate the effectiveness of our approach in achieving superior word-level typographic control, font consistency, and style consistency in Basic and Artistic Text Rendering (BTR and ATR) tasks. Our results mark a significant advancement in the precision and adaptability of T2I models, presenting new possibilities for creative applications and design-oriented tasks. |
---|---|
ISSN: | 2331-8422 |