Iwasawa theory for weighted graphs

Let \(p\) be a prime number and let \(d\) be a positive integer. In this paper, we generalize Iwasawa theory for graphs initiated by Gonet and Valli\`{e}res to weighted graphs. In particular, we prove an analogue of Iwasawa's class number formula and that of Kida's formula for compatible s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Adachi, Taiga, Mizuno, Kosuke, Tateno, Sohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(p\) be a prime number and let \(d\) be a positive integer. In this paper, we generalize Iwasawa theory for graphs initiated by Gonet and Valli\`{e}res to weighted graphs. In particular, we prove an analogue of Iwasawa's class number formula and that of Kida's formula for compatible systems of \((\mathbb{Z}/p^n\mathbb{Z})^d\)-covers of weighted graphs. We also provide numerical examples. At the end of this paper, we give an application of the ideas of Iwasawa theory to the theory of discrete-time quantum walks in graphs.
ISSN:2331-8422