Iwasawa theory for weighted graphs
Let \(p\) be a prime number and let \(d\) be a positive integer. In this paper, we generalize Iwasawa theory for graphs initiated by Gonet and Valli\`{e}res to weighted graphs. In particular, we prove an analogue of Iwasawa's class number formula and that of Kida's formula for compatible s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(p\) be a prime number and let \(d\) be a positive integer. In this paper, we generalize Iwasawa theory for graphs initiated by Gonet and Valli\`{e}res to weighted graphs. In particular, we prove an analogue of Iwasawa's class number formula and that of Kida's formula for compatible systems of \((\mathbb{Z}/p^n\mathbb{Z})^d\)-covers of weighted graphs. We also provide numerical examples. At the end of this paper, we give an application of the ideas of Iwasawa theory to the theory of discrete-time quantum walks in graphs. |
---|---|
ISSN: | 2331-8422 |