Hyperfiniteness on Topological Ramsey Spaces

We investigate the behavior of countable Borel equivalence relations (CBERs) on topological Ramsey spaces. First, we give a simple proof of the fact that every CBER on \([\mathbb{N}]^{\mathbb{N}}\) is hyperfinite on some set of the form \([A]^{\mathbb{N}}\). Using the idea behind the proof, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Bursics, Balázs, Vidnyánszky, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the behavior of countable Borel equivalence relations (CBERs) on topological Ramsey spaces. First, we give a simple proof of the fact that every CBER on \([\mathbb{N}]^{\mathbb{N}}\) is hyperfinite on some set of the form \([A]^{\mathbb{N}}\). Using the idea behind the proof, we show the analogous result for every topological Ramsey space.
ISSN:2331-8422