Copula-Based Non-Metric Unfolding on Augmented Data Matrix

A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of classification 2024-11, Vol.41 (3), p.678-697
Hauptverfasser: Nai Ruscone, Marta, Fernández, Daniel, D’Ambrosio, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 3
container_start_page 678
container_title Journal of classification
container_volume 41
creator Nai Ruscone, Marta
Fernández, Daniel
D’Ambrosio, Antonio
description A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association measures among rankings (the individuals), and between rankings and objects (namely, a rank-order representation of the objects through tied rankings). The proposed technique leads to acceptable recovery of given preference structures.
doi_str_mv 10.1007/s00357-024-09495-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3138417581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138417581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-cc6c994205558640ecde372fbfb930c494033a30d8985b05974f4b05bbc72f723</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwB5giMRuuX3HMVspTamGhs-U4TtSqtYudSOXfYwgSG9NdzvmudBC6JHBNAORNAmBCYqAcg-JK4MMRmhDOKCaMs2M0ASJLzGlZnaKzlDaQpbKUE3Q7D_tha_CdSa4pXoPHS9fHtS1Wvg3bZu27IvhiNnQ75_tM3JveFEuTkcM5OmnNNrmL3ztFq8eH9_kzXrw9vcxnC2wpQI-tLa1SnIIQoio5ONs4Jmlbt7ViYLniwJhh0FSqEjUIJXnL861rmylJ2RRdjbv7GD4Gl3q9CUP0-aVmhFWcSFGRTNGRsjGkFF2r93G9M_FTE9DfjfTYSOdG-qeRPmSJjVLKsO9c_Jv-x_oC1_1oHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138417581</pqid></control><display><type>article</type><title>Copula-Based Non-Metric Unfolding on Augmented Data Matrix</title><source>SpringerNature Journals</source><creator>Nai Ruscone, Marta ; Fernández, Daniel ; D’Ambrosio, Antonio</creator><creatorcontrib>Nai Ruscone, Marta ; Fernández, Daniel ; D’Ambrosio, Antonio</creatorcontrib><description>A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association measures among rankings (the individuals), and between rankings and objects (namely, a rank-order representation of the objects through tied rankings). The proposed technique leads to acceptable recovery of given preference structures.</description><identifier>ISSN: 0176-4268</identifier><identifier>EISSN: 1432-1343</identifier><identifier>DOI: 10.1007/s00357-024-09495-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioinformatics ; Data augmentation ; Marketing ; Mathematics and Statistics ; Pattern Recognition ; Psychometrics ; Signal,Image and Speech Processing ; Statistical Theory and Methods ; Statistics</subject><ispartof>Journal of classification, 2024-11, Vol.41 (3), p.678-697</ispartof><rights>The Author(s) under exclusive licence to The Classification Society 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-cc6c994205558640ecde372fbfb930c494033a30d8985b05974f4b05bbc72f723</cites><orcidid>0000-0002-1905-037X ; 0000-0001-7416-644X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00357-024-09495-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00357-024-09495-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nai Ruscone, Marta</creatorcontrib><creatorcontrib>Fernández, Daniel</creatorcontrib><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><title>Copula-Based Non-Metric Unfolding on Augmented Data Matrix</title><title>Journal of classification</title><addtitle>J Classif</addtitle><description>A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association measures among rankings (the individuals), and between rankings and objects (namely, a rank-order representation of the objects through tied rankings). The proposed technique leads to acceptable recovery of given preference structures.</description><subject>Bioinformatics</subject><subject>Data augmentation</subject><subject>Marketing</subject><subject>Mathematics and Statistics</subject><subject>Pattern Recognition</subject><subject>Psychometrics</subject><subject>Signal,Image and Speech Processing</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>0176-4268</issn><issn>1432-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAURi0EEqXwB5giMRuuX3HMVspTamGhs-U4TtSqtYudSOXfYwgSG9NdzvmudBC6JHBNAORNAmBCYqAcg-JK4MMRmhDOKCaMs2M0ASJLzGlZnaKzlDaQpbKUE3Q7D_tha_CdSa4pXoPHS9fHtS1Wvg3bZu27IvhiNnQ75_tM3JveFEuTkcM5OmnNNrmL3ztFq8eH9_kzXrw9vcxnC2wpQI-tLa1SnIIQoio5ONs4Jmlbt7ViYLniwJhh0FSqEjUIJXnL861rmylJ2RRdjbv7GD4Gl3q9CUP0-aVmhFWcSFGRTNGRsjGkFF2r93G9M_FTE9DfjfTYSOdG-qeRPmSJjVLKsO9c_Jv-x_oC1_1oHA</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Nai Ruscone, Marta</creator><creator>Fernández, Daniel</creator><creator>D’Ambrosio, Antonio</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid><orcidid>https://orcid.org/0000-0001-7416-644X</orcidid></search><sort><creationdate>20241121</creationdate><title>Copula-Based Non-Metric Unfolding on Augmented Data Matrix</title><author>Nai Ruscone, Marta ; Fernández, Daniel ; D’Ambrosio, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-cc6c994205558640ecde372fbfb930c494033a30d8985b05974f4b05bbc72f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinformatics</topic><topic>Data augmentation</topic><topic>Marketing</topic><topic>Mathematics and Statistics</topic><topic>Pattern Recognition</topic><topic>Psychometrics</topic><topic>Signal,Image and Speech Processing</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nai Ruscone, Marta</creatorcontrib><creatorcontrib>Fernández, Daniel</creatorcontrib><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nai Ruscone, Marta</au><au>Fernández, Daniel</au><au>D’Ambrosio, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copula-Based Non-Metric Unfolding on Augmented Data Matrix</atitle><jtitle>Journal of classification</jtitle><stitle>J Classif</stitle><date>2024-11-21</date><risdate>2024</risdate><volume>41</volume><issue>3</issue><spage>678</spage><epage>697</epage><pages>678-697</pages><issn>0176-4268</issn><eissn>1432-1343</eissn><abstract>A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association measures among rankings (the individuals), and between rankings and objects (namely, a rank-order representation of the objects through tied rankings). The proposed technique leads to acceptable recovery of given preference structures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00357-024-09495-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid><orcidid>https://orcid.org/0000-0001-7416-644X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0176-4268
ispartof Journal of classification, 2024-11, Vol.41 (3), p.678-697
issn 0176-4268
1432-1343
language eng
recordid cdi_proquest_journals_3138417581
source SpringerNature Journals
subjects Bioinformatics
Data augmentation
Marketing
Mathematics and Statistics
Pattern Recognition
Psychometrics
Signal,Image and Speech Processing
Statistical Theory and Methods
Statistics
title Copula-Based Non-Metric Unfolding on Augmented Data Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copula-Based%20Non-Metric%20Unfolding%20on%20Augmented%20Data%20Matrix&rft.jtitle=Journal%20of%20classification&rft.au=Nai%C2%A0Ruscone,%20Marta&rft.date=2024-11-21&rft.volume=41&rft.issue=3&rft.spage=678&rft.epage=697&rft.pages=678-697&rft.issn=0176-4268&rft.eissn=1432-1343&rft_id=info:doi/10.1007/s00357-024-09495-x&rft_dat=%3Cproquest_cross%3E3138417581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138417581&rft_id=info:pmid/&rfr_iscdi=true