Copula-Based Non-Metric Unfolding on Augmented Data Matrix

A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of classification 2024-11, Vol.41 (3), p.678-697
Hauptverfasser: Nai Ruscone, Marta, Fernández, Daniel, D’Ambrosio, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association measures among rankings (the individuals), and between rankings and objects (namely, a rank-order representation of the objects through tied rankings). The proposed technique leads to acceptable recovery of given preference structures.
ISSN:0176-4268
1432-1343
DOI:10.1007/s00357-024-09495-x