Frobenius nonclassical hypersurfaces: Frobenius nonclassical hypersurfaces

A smooth hypersurface over a finite field F q is called Frobenius nonclassical if the image of every geometric point under the q -th Frobenius endomorphism remains in the unique hyperplane tangent to the point. In this paper, we establish sharp lower and upper bounds for the degrees of such hypersur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2025, Vol.309 (1)
Hauptverfasser: Asgarli, Shamil, Duan, Lian, Lai, Kuan-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A smooth hypersurface over a finite field F q is called Frobenius nonclassical if the image of every geometric point under the q -th Frobenius endomorphism remains in the unique hyperplane tangent to the point. In this paper, we establish sharp lower and upper bounds for the degrees of such hypersurfaces, give characterizations for those achieving the maximal degrees, and prove in the surface case that they are Hermitian when their degrees attain the minimum. We also prove that the set of F q -rational points on a Frobenius nonclassical hypersurface form a blocking set with respect to lines, which indicates the existence of many F q -points.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-024-03638-x