Frobenius nonclassical hypersurfaces: Frobenius nonclassical hypersurfaces
A smooth hypersurface over a finite field F q is called Frobenius nonclassical if the image of every geometric point under the q -th Frobenius endomorphism remains in the unique hyperplane tangent to the point. In this paper, we establish sharp lower and upper bounds for the degrees of such hypersur...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2025, Vol.309 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A smooth hypersurface over a finite field
F
q
is called Frobenius nonclassical if the image of every geometric point under the
q
-th Frobenius endomorphism remains in the unique hyperplane tangent to the point. In this paper, we establish sharp lower and upper bounds for the degrees of such hypersurfaces, give characterizations for those achieving the maximal degrees, and prove in the surface case that they are Hermitian when their degrees attain the minimum. We also prove that the set of
F
q
-rational points on a Frobenius nonclassical hypersurface form a blocking set with respect to lines, which indicates the existence of many
F
q
-points. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-024-03638-x |