Symbolic dynamics for Hénon maps near the boundary of the horseshoe locus
Bedford and Smillie [A symbolic characterization of the horseshoe locus in the Hénon family. Ergod. Th. & Dynam. Sys. 37(5) (2017), 1389–1412] classified the dynamics of the Hénon map $f_{a, b} : (x, y)\mapsto (x^2-a-by, x)$ defined on $\mathbb {R}^2$ in terms of a symbolic dynamics when $(a, b)...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2025-01, Vol.45 (1), p.140-174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bedford and Smillie [A symbolic characterization of the horseshoe locus in the Hénon family. Ergod. Th. & Dynam. Sys. 37(5) (2017), 1389–1412] classified the dynamics of the Hénon map
$f_{a, b} : (x, y)\mapsto (x^2-a-by, x)$
defined on
$\mathbb {R}^2$
in terms of a symbolic dynamics when
$(a, b)$
is close to the boundary of the horseshoe locus. The purpose of the current article is to generalize their results for all
$b\ne 0$
(including the case
$b < 0$
as well). The method of the proof is first to regard
$f_{a, b}$
as a complex dynamical system in
$\mathbb {C}^2$
and second to introduce the new Markov-like partition in
$\mathbb {R}^2$
constructed by us [On parameter loci of the Hénon family. Comm. Math. Phys. 361(2) (2018), 343–414]. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2024.34 |