Symbolic dynamics for Hénon maps near the boundary of the horseshoe locus

Bedford and Smillie [A symbolic characterization of the horseshoe locus in the Hénon family. Ergod. Th. & Dynam. Sys. 37(5) (2017), 1389–1412] classified the dynamics of the Hénon map $f_{a, b} : (x, y)\mapsto (x^2-a-by, x)$ defined on $\mathbb {R}^2$ in terms of a symbolic dynamics when $(a, b)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2025-01, Vol.45 (1), p.140-174
Hauptverfasser: HIRONAKA, YUKI, ISHII, YUTAKA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bedford and Smillie [A symbolic characterization of the horseshoe locus in the Hénon family. Ergod. Th. & Dynam. Sys. 37(5) (2017), 1389–1412] classified the dynamics of the Hénon map $f_{a, b} : (x, y)\mapsto (x^2-a-by, x)$ defined on $\mathbb {R}^2$ in terms of a symbolic dynamics when $(a, b)$ is close to the boundary of the horseshoe locus. The purpose of the current article is to generalize their results for all $b\ne 0$ (including the case $b < 0$ as well). The method of the proof is first to regard $f_{a, b}$ as a complex dynamical system in $\mathbb {C}^2$ and second to introduce the new Markov-like partition in $\mathbb {R}^2$ constructed by us [On parameter loci of the Hénon family. Comm. Math. Phys. 361(2) (2018), 343–414].
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2024.34