Internal tides in the Mediterranean Sea
The generation and propagation sites of internal tides in the Mediterranean Sea are mapped through a comprehensive high-resolution numerical study. Two ocean general circulation models were used for this: NEMO v3.6, and ICON-O, both hydrostatic ocean models based on primitive equations with Boussine...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generation and propagation sites of internal tides in the Mediterranean Sea are mapped through a comprehensive high-resolution numerical study. Two ocean general circulation models were used for this: NEMO v3.6, and ICON-O, both hydrostatic ocean models based on primitive equations with Boussinesq approximation, where NEMO is a regional Mediterranean Sea model with an Atlantic box, and ICON a global model. Internal tides are widespread in the Mediterranean Sea. The primary generation sites: the Gibraltar Strait, Sicily Strait/Malta Bank, and Hellenic Arc, are mapped through analysis of the tidal barotropic to baroclinic energy conversion. Semidiurnal internal tides can propagate for hundreds of kilometres from these generation sites into the Algerian Sea, Tyrrhenian Sea, and Ionian Sea respectively. Diurnal internal tides remain trapped along the bathymetry, and are generated in the central Mediterranean Sea and southeastern coasts of the basin. The total energy used for internal tide generation in the Mediterranean Sea is 2.89 GW in NEMO and 1.36 GW in ICON. Wavelengths of the first baroclinic modes of the M2 tide are calculated in various regions of the Mediterranean Sea where internal tides are propagating, comparing model outputs to a theory-based calculation. The models are also intercompared to investigate the differences between them in their representation of internal tides. |
---|---|
ISSN: | 2331-8422 |