Finite simple groups have many classes of \(p\)-elements
For an element \(x\) of a finite group \(T\), the \(\mathrm{Aut}(T)\)-class of \(x\) is the set \(\{ x^\sigma\mid \sigma\in \mathrm{Aut}(T)\}\). We prove that the order \(|T|\) of a finite nonabelian simple group \(T\) is bounded above by a function of the parameter \(m(T)\), where \(m(T)\) is the m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an element \(x\) of a finite group \(T\), the \(\mathrm{Aut}(T)\)-class of \(x\) is the set \(\{ x^\sigma\mid \sigma\in \mathrm{Aut}(T)\}\). We prove that the order \(|T|\) of a finite nonabelian simple group \(T\) is bounded above by a function of the parameter \(m(T)\), where \(m(T)\) is the maximum, over all primes \(p\), of the number of \(\mathrm{Aut}(T)\)-classes of elements of \(T\) of \(p\)-power order. This bound is a substantial generalisation of results of Pyber, and of Héthelyi and K\"ulshammer, and it has implications for relative Brauer groups of finite extensions of global fields. |
---|---|
ISSN: | 2331-8422 |