Finite simple groups have many classes of \(p\)-elements

For an element \(x\) of a finite group \(T\), the \(\mathrm{Aut}(T)\)-class of \(x\) is the set \(\{ x^\sigma\mid \sigma\in \mathrm{Aut}(T)\}\). We prove that the order \(|T|\) of a finite nonabelian simple group \(T\) is bounded above by a function of the parameter \(m(T)\), where \(m(T)\) is the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Giudici, Michael, Morgan, Luke, Praeger, Cheryl E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an element \(x\) of a finite group \(T\), the \(\mathrm{Aut}(T)\)-class of \(x\) is the set \(\{ x^\sigma\mid \sigma\in \mathrm{Aut}(T)\}\). We prove that the order \(|T|\) of a finite nonabelian simple group \(T\) is bounded above by a function of the parameter \(m(T)\), where \(m(T)\) is the maximum, over all primes \(p\), of the number of \(\mathrm{Aut}(T)\)-classes of elements of \(T\) of \(p\)-power order. This bound is a substantial generalisation of results of Pyber, and of Héthelyi and K\"ulshammer, and it has implications for relative Brauer groups of finite extensions of global fields.
ISSN:2331-8422