Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2
The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in s...
Gespeichert in:
Veröffentlicht in: | Materials chemistry frontiers 2024-12, Vol.8 (24), p.4088-4095 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4095 |
---|---|
container_issue | 24 |
container_start_page | 4088 |
container_title | Materials chemistry frontiers |
container_volume | 8 |
creator | Li, Liewu Huang, Zhencheng Yuan, Qi Wang, Hongbin Yang, Xuming Chen, Chufang Gong, Xiaoyu Jiang, Qianqian Chen, Jing Ouyang, Xiaoping Wang, Jionghui He, Liqing Ren, Xiangzhong Hu, Jiangtao Zhang, Qianling Liu, Jianhong |
description | The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries. |
doi_str_mv | 10.1039/d4qm00748d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3134864611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134864611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-333b5628e08f1b84ff0958c6b90e6a1d9925fcd2226375a67d2dd5c3f7e5be743</originalsourceid><addsrcrecordid>eNotjb1OwzAYRS0kJKrShSewxBz6-T8ZUcSfVKkLDEyVY39WXAU7TdyhPD1BMN2z3HMIuWPwwEA0Wy9PXwBG1v6KrDgoXjElzA3ZzPMRAJgxXABbkc-2tynhEL9tiTnRHKizpc8etzigK1MeLgVpTAWnsbcz0pIppuXkFuyRTrZg5exouzjEcvkV7GKb9_yWXAc7zLj53zX5eH56b1-r3f7lrX3cVSNjolRCiE5pXiPUgXW1DAEaVTvdNYDaMt80XAXnOedaGGW18dx75UQwqDo0UqzJ_Z93nPLpjHM5HPN5SkvyIJiQtZZ6Cf0ABZdSjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134864611</pqid></control><display><type>article</type><title>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Liewu ; Huang, Zhencheng ; Yuan, Qi ; Wang, Hongbin ; Yang, Xuming ; Chen, Chufang ; Gong, Xiaoyu ; Jiang, Qianqian ; Chen, Jing ; Ouyang, Xiaoping ; Wang, Jionghui ; He, Liqing ; Ren, Xiangzhong ; Hu, Jiangtao ; Zhang, Qianling ; Liu, Jianhong</creator><creatorcontrib>Li, Liewu ; Huang, Zhencheng ; Yuan, Qi ; Wang, Hongbin ; Yang, Xuming ; Chen, Chufang ; Gong, Xiaoyu ; Jiang, Qianqian ; Chen, Jing ; Ouyang, Xiaoping ; Wang, Jionghui ; He, Liqing ; Ren, Xiangzhong ; Hu, Jiangtao ; Zhang, Qianling ; Liu, Jianhong</creatorcontrib><description>The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.</description><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/d4qm00748d</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Cathodes ; Channelization ; Density functional theory ; Diffusion barriers ; Diffusion layers ; Electrode materials ; Lithium compounds ; Lithium-ion batteries ; Structural stability ; Transition metal oxides</subject><ispartof>Materials chemistry frontiers, 2024-12, Vol.8 (24), p.4088-4095</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Liewu</creatorcontrib><creatorcontrib>Huang, Zhencheng</creatorcontrib><creatorcontrib>Yuan, Qi</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Yang, Xuming</creatorcontrib><creatorcontrib>Chen, Chufang</creatorcontrib><creatorcontrib>Gong, Xiaoyu</creatorcontrib><creatorcontrib>Jiang, Qianqian</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jionghui</creatorcontrib><creatorcontrib>He, Liqing</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Hu, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><title>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</title><title>Materials chemistry frontiers</title><description>The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.</description><subject>Cathodes</subject><subject>Channelization</subject><subject>Density functional theory</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Electrode materials</subject><subject>Lithium compounds</subject><subject>Lithium-ion batteries</subject><subject>Structural stability</subject><subject>Transition metal oxides</subject><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotjb1OwzAYRS0kJKrShSewxBz6-T8ZUcSfVKkLDEyVY39WXAU7TdyhPD1BMN2z3HMIuWPwwEA0Wy9PXwBG1v6KrDgoXjElzA3ZzPMRAJgxXABbkc-2tynhEL9tiTnRHKizpc8etzigK1MeLgVpTAWnsbcz0pIppuXkFuyRTrZg5exouzjEcvkV7GKb9_yWXAc7zLj53zX5eH56b1-r3f7lrX3cVSNjolRCiE5pXiPUgXW1DAEaVTvdNYDaMt80XAXnOedaGGW18dx75UQwqDo0UqzJ_Z93nPLpjHM5HPN5SkvyIJiQtZZ6Cf0ABZdSjw</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Li, Liewu</creator><creator>Huang, Zhencheng</creator><creator>Yuan, Qi</creator><creator>Wang, Hongbin</creator><creator>Yang, Xuming</creator><creator>Chen, Chufang</creator><creator>Gong, Xiaoyu</creator><creator>Jiang, Qianqian</creator><creator>Chen, Jing</creator><creator>Ouyang, Xiaoping</creator><creator>Wang, Jionghui</creator><creator>He, Liqing</creator><creator>Ren, Xiangzhong</creator><creator>Hu, Jiangtao</creator><creator>Zhang, Qianling</creator><creator>Liu, Jianhong</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241202</creationdate><title>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</title><author>Li, Liewu ; Huang, Zhencheng ; Yuan, Qi ; Wang, Hongbin ; Yang, Xuming ; Chen, Chufang ; Gong, Xiaoyu ; Jiang, Qianqian ; Chen, Jing ; Ouyang, Xiaoping ; Wang, Jionghui ; He, Liqing ; Ren, Xiangzhong ; Hu, Jiangtao ; Zhang, Qianling ; Liu, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-333b5628e08f1b84ff0958c6b90e6a1d9925fcd2226375a67d2dd5c3f7e5be743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Channelization</topic><topic>Density functional theory</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Electrode materials</topic><topic>Lithium compounds</topic><topic>Lithium-ion batteries</topic><topic>Structural stability</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liewu</creatorcontrib><creatorcontrib>Huang, Zhencheng</creatorcontrib><creatorcontrib>Yuan, Qi</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Yang, Xuming</creatorcontrib><creatorcontrib>Chen, Chufang</creatorcontrib><creatorcontrib>Gong, Xiaoyu</creatorcontrib><creatorcontrib>Jiang, Qianqian</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jionghui</creatorcontrib><creatorcontrib>He, Liqing</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Hu, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liewu</au><au>Huang, Zhencheng</au><au>Yuan, Qi</au><au>Wang, Hongbin</au><au>Yang, Xuming</au><au>Chen, Chufang</au><au>Gong, Xiaoyu</au><au>Jiang, Qianqian</au><au>Chen, Jing</au><au>Ouyang, Xiaoping</au><au>Wang, Jionghui</au><au>He, Liqing</au><au>Ren, Xiangzhong</au><au>Hu, Jiangtao</au><au>Zhang, Qianling</au><au>Liu, Jianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2024-12-02</date><risdate>2024</risdate><volume>8</volume><issue>24</issue><spage>4088</spage><epage>4095</epage><pages>4088-4095</pages><eissn>2052-1537</eissn><abstract>The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4qm00748d</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2052-1537 |
ispartof | Materials chemistry frontiers, 2024-12, Vol.8 (24), p.4088-4095 |
issn | 2052-1537 |
language | eng |
recordid | cdi_proquest_journals_3134864611 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Cathodes Channelization Density functional theory Diffusion barriers Diffusion layers Electrode materials Lithium compounds Lithium-ion batteries Structural stability Transition metal oxides |
title | Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channelization%20of%20cathode/electrolyte%20interphase%20to%20enhance%20the%20rate-capability%20of%20LiCoO2&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Li,%20Liewu&rft.date=2024-12-02&rft.volume=8&rft.issue=24&rft.spage=4088&rft.epage=4095&rft.pages=4088-4095&rft.eissn=2052-1537&rft_id=info:doi/10.1039/d4qm00748d&rft_dat=%3Cproquest%3E3134864611%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134864611&rft_id=info:pmid/&rfr_iscdi=true |