Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2

The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry frontiers 2024-12, Vol.8 (24), p.4088-4095
Hauptverfasser: Li, Liewu, Huang, Zhencheng, Yuan, Qi, Wang, Hongbin, Yang, Xuming, Chen, Chufang, Gong, Xiaoyu, Jiang, Qianqian, Chen, Jing, Ouyang, Xiaoping, Wang, Jionghui, He, Liqing, Ren, Xiangzhong, Hu, Jiangtao, Zhang, Qianling, Liu, Jianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4095
container_issue 24
container_start_page 4088
container_title Materials chemistry frontiers
container_volume 8
creator Li, Liewu
Huang, Zhencheng
Yuan, Qi
Wang, Hongbin
Yang, Xuming
Chen, Chufang
Gong, Xiaoyu
Jiang, Qianqian
Chen, Jing
Ouyang, Xiaoping
Wang, Jionghui
He, Liqing
Ren, Xiangzhong
Hu, Jiangtao
Zhang, Qianling
Liu, Jianhong
description The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.
doi_str_mv 10.1039/d4qm00748d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3134864611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134864611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-333b5628e08f1b84ff0958c6b90e6a1d9925fcd2226375a67d2dd5c3f7e5be743</originalsourceid><addsrcrecordid>eNotjb1OwzAYRS0kJKrShSewxBz6-T8ZUcSfVKkLDEyVY39WXAU7TdyhPD1BMN2z3HMIuWPwwEA0Wy9PXwBG1v6KrDgoXjElzA3ZzPMRAJgxXABbkc-2tynhEL9tiTnRHKizpc8etzigK1MeLgVpTAWnsbcz0pIppuXkFuyRTrZg5exouzjEcvkV7GKb9_yWXAc7zLj53zX5eH56b1-r3f7lrX3cVSNjolRCiE5pXiPUgXW1DAEaVTvdNYDaMt80XAXnOedaGGW18dx75UQwqDo0UqzJ_Z93nPLpjHM5HPN5SkvyIJiQtZZ6Cf0ABZdSjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134864611</pqid></control><display><type>article</type><title>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Liewu ; Huang, Zhencheng ; Yuan, Qi ; Wang, Hongbin ; Yang, Xuming ; Chen, Chufang ; Gong, Xiaoyu ; Jiang, Qianqian ; Chen, Jing ; Ouyang, Xiaoping ; Wang, Jionghui ; He, Liqing ; Ren, Xiangzhong ; Hu, Jiangtao ; Zhang, Qianling ; Liu, Jianhong</creator><creatorcontrib>Li, Liewu ; Huang, Zhencheng ; Yuan, Qi ; Wang, Hongbin ; Yang, Xuming ; Chen, Chufang ; Gong, Xiaoyu ; Jiang, Qianqian ; Chen, Jing ; Ouyang, Xiaoping ; Wang, Jionghui ; He, Liqing ; Ren, Xiangzhong ; Hu, Jiangtao ; Zhang, Qianling ; Liu, Jianhong</creatorcontrib><description>The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.</description><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/d4qm00748d</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Cathodes ; Channelization ; Density functional theory ; Diffusion barriers ; Diffusion layers ; Electrode materials ; Lithium compounds ; Lithium-ion batteries ; Structural stability ; Transition metal oxides</subject><ispartof>Materials chemistry frontiers, 2024-12, Vol.8 (24), p.4088-4095</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Liewu</creatorcontrib><creatorcontrib>Huang, Zhencheng</creatorcontrib><creatorcontrib>Yuan, Qi</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Yang, Xuming</creatorcontrib><creatorcontrib>Chen, Chufang</creatorcontrib><creatorcontrib>Gong, Xiaoyu</creatorcontrib><creatorcontrib>Jiang, Qianqian</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jionghui</creatorcontrib><creatorcontrib>He, Liqing</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Hu, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><title>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</title><title>Materials chemistry frontiers</title><description>The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.</description><subject>Cathodes</subject><subject>Channelization</subject><subject>Density functional theory</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Electrode materials</subject><subject>Lithium compounds</subject><subject>Lithium-ion batteries</subject><subject>Structural stability</subject><subject>Transition metal oxides</subject><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotjb1OwzAYRS0kJKrShSewxBz6-T8ZUcSfVKkLDEyVY39WXAU7TdyhPD1BMN2z3HMIuWPwwEA0Wy9PXwBG1v6KrDgoXjElzA3ZzPMRAJgxXABbkc-2tynhEL9tiTnRHKizpc8etzigK1MeLgVpTAWnsbcz0pIppuXkFuyRTrZg5exouzjEcvkV7GKb9_yWXAc7zLj53zX5eH56b1-r3f7lrX3cVSNjolRCiE5pXiPUgXW1DAEaVTvdNYDaMt80XAXnOedaGGW18dx75UQwqDo0UqzJ_Z93nPLpjHM5HPN5SkvyIJiQtZZ6Cf0ABZdSjw</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Li, Liewu</creator><creator>Huang, Zhencheng</creator><creator>Yuan, Qi</creator><creator>Wang, Hongbin</creator><creator>Yang, Xuming</creator><creator>Chen, Chufang</creator><creator>Gong, Xiaoyu</creator><creator>Jiang, Qianqian</creator><creator>Chen, Jing</creator><creator>Ouyang, Xiaoping</creator><creator>Wang, Jionghui</creator><creator>He, Liqing</creator><creator>Ren, Xiangzhong</creator><creator>Hu, Jiangtao</creator><creator>Zhang, Qianling</creator><creator>Liu, Jianhong</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241202</creationdate><title>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</title><author>Li, Liewu ; Huang, Zhencheng ; Yuan, Qi ; Wang, Hongbin ; Yang, Xuming ; Chen, Chufang ; Gong, Xiaoyu ; Jiang, Qianqian ; Chen, Jing ; Ouyang, Xiaoping ; Wang, Jionghui ; He, Liqing ; Ren, Xiangzhong ; Hu, Jiangtao ; Zhang, Qianling ; Liu, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-333b5628e08f1b84ff0958c6b90e6a1d9925fcd2226375a67d2dd5c3f7e5be743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Channelization</topic><topic>Density functional theory</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Electrode materials</topic><topic>Lithium compounds</topic><topic>Lithium-ion batteries</topic><topic>Structural stability</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Liewu</creatorcontrib><creatorcontrib>Huang, Zhencheng</creatorcontrib><creatorcontrib>Yuan, Qi</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Yang, Xuming</creatorcontrib><creatorcontrib>Chen, Chufang</creatorcontrib><creatorcontrib>Gong, Xiaoyu</creatorcontrib><creatorcontrib>Jiang, Qianqian</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Wang, Jionghui</creatorcontrib><creatorcontrib>He, Liqing</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Hu, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Liewu</au><au>Huang, Zhencheng</au><au>Yuan, Qi</au><au>Wang, Hongbin</au><au>Yang, Xuming</au><au>Chen, Chufang</au><au>Gong, Xiaoyu</au><au>Jiang, Qianqian</au><au>Chen, Jing</au><au>Ouyang, Xiaoping</au><au>Wang, Jionghui</au><au>He, Liqing</au><au>Ren, Xiangzhong</au><au>Hu, Jiangtao</au><au>Zhang, Qianling</au><au>Liu, Jianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2024-12-02</date><risdate>2024</risdate><volume>8</volume><issue>24</issue><spage>4088</spage><epage>4095</epage><pages>4088-4095</pages><eissn>2052-1537</eissn><abstract>The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4qm00748d</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2052-1537
ispartof Materials chemistry frontiers, 2024-12, Vol.8 (24), p.4088-4095
issn 2052-1537
language eng
recordid cdi_proquest_journals_3134864611
source Royal Society Of Chemistry Journals 2008-
subjects Cathodes
Channelization
Density functional theory
Diffusion barriers
Diffusion layers
Electrode materials
Lithium compounds
Lithium-ion batteries
Structural stability
Transition metal oxides
title Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channelization%20of%20cathode/electrolyte%20interphase%20to%20enhance%20the%20rate-capability%20of%20LiCoO2&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Li,%20Liewu&rft.date=2024-12-02&rft.volume=8&rft.issue=24&rft.spage=4088&rft.epage=4095&rft.pages=4088-4095&rft.eissn=2052-1537&rft_id=info:doi/10.1039/d4qm00748d&rft_dat=%3Cproquest%3E3134864611%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134864611&rft_id=info:pmid/&rfr_iscdi=true