Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2
The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in s...
Gespeichert in:
Veröffentlicht in: | Materials chemistry frontiers 2024-12, Vol.8 (24), p.4088-4095 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The LiCoO2 cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (vs. Li+/Li), particularly under conditions of high current density. Here, we report an in situ surface modification technique for synthesizing a LiCoO2 composite coated with ZrP2O7 (LiCoO2@ZrP2O7) to mitigate these issues. The LiCoO2@ZrP2O7 electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO2 cathode is effectively enhanced by incorporating a ZrP2O7 coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP2O7 facilitates Li+ migration into LiCoO2 by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li+ diffusion kinetics, particularly for advancing high-energy density all solid-state batteries. |
---|---|
ISSN: | 2052-1537 |
DOI: | 10.1039/d4qm00748d |