Cycle slip detection and repair method towards multi-frequency BDS-3/INS tightly coupled integration in kinematic surveying

Carrier phase integer ambiguities must be determined for BDS-3/inertial navigation system (INS) tightly coupled (TC) integration to achieve centimetre-level positioning accuracy. However, cycle slip breaks the consistency of the integer ambiguities. Conventional multi-frequency cycle slip methods us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 2024-12, Vol.98 (12), Article 111
Hauptverfasser: Xiao, Kai, Zhu, Xiangwei, Zhang, Lundong, Sun, Fuping, Zhou, Peiyuan, Li, Wanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carrier phase integer ambiguities must be determined for BDS-3/inertial navigation system (INS) tightly coupled (TC) integration to achieve centimetre-level positioning accuracy. However, cycle slip breaks the consistency of the integer ambiguities. Conventional multi-frequency cycle slip methods use the pseudorange; thus, requiring improvement when applied to kinematic situations. Furthermore, a concise and nonprior information-dependent model is crucial for real-time processing. In this study, an inertial-aided BDS-3 cycle slip detection and repair (I-CDR) method was developed. First, a BDS-3/INS TC model with I-CDR was created. The ionospheric delays were modelled as part of the TC states; therefore, they could be estimated and eliminated. Investigations were conducted on the effects of carrier phase noise, residual ionosphere delay, and INS-predicted position error on combined cycle slip detection (CCD) accuracy. The optimal CCDs under various frequency available configurations were determined. The effectiveness of I-CDR was demonstrated using land vehicle test data. The false alarm ratio was less than 1.0%, and the missed detection ratio was almost zero even in situations with challenging abundant 1-cycle slips in random epochs. Furthermore, the right determination ratio reached 100%. In addition, BDS-3 signal loss-recovery cases were simulated, and all cycle slips for all satellites could be repaired within 40s. I-CDR exhibits outstanding cycle slip detection and repair performance for dense 1-cycle slip and signal loss-recovery cases, demonstrating its suitability for BDS-3/INS TC integration.
ISSN:0949-7714
1432-1394
DOI:10.1007/s00190-024-01896-5