On the μ-invariants of residually reducible Galois representations
The Iwasawa $\mu$-invariant of the Selmer group of a residually reducible Galois representation arising from a Hecke eigencuspform is studied. Furthermore, certain Iwasawa-invariants refining the $\mu$-invariant are defined and analyzed. As an application, we show that given a reducible mod-$p$ Galo...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2024-12, Vol.146 (6), p.1617-1649 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Iwasawa $\mu$-invariant of the Selmer group of a residually reducible Galois representation arising from a Hecke eigencuspform is studied. Furthermore, certain Iwasawa-invariants refining the $\mu$-invariant are defined and analyzed. As an application, we show that given a reducible mod-$p$ Galois representation $\bar{\rho}$ and any choice of integer $N\geq 1$, there is a modular Galois representation lifting $\bar{\rho}$ whose associated Selmer group has $\mu$-invariant $\geq N$. This is a refinement of Serre's conjecture in the residually reducible case. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2024.a944359 |