On the μ-invariants of residually reducible Galois representations

The Iwasawa $\mu$-invariant of the Selmer group of a residually reducible Galois representation arising from a Hecke eigencuspform is studied. Furthermore, certain Iwasawa-invariants refining the $\mu$-invariant are defined and analyzed. As an application, we show that given a reducible mod-$p$ Galo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2024-12, Vol.146 (6), p.1617-1649
Hauptverfasser: Ray, Anwesh, Sujatha, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Iwasawa $\mu$-invariant of the Selmer group of a residually reducible Galois representation arising from a Hecke eigencuspform is studied. Furthermore, certain Iwasawa-invariants refining the $\mu$-invariant are defined and analyzed. As an application, we show that given a reducible mod-$p$ Galois representation $\bar{\rho}$ and any choice of integer $N\geq 1$, there is a modular Galois representation lifting $\bar{\rho}$ whose associated Selmer group has $\mu$-invariant $\geq N$. This is a refinement of Serre's conjecture in the residually reducible case.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2024.a944359