Estimation of 3D Shape and Volume of Fire Plumes from Multiple Views
This study evaluates deep-learning and Shape from Silhouette (SfS) methods for 3D reconstruction of smoke plumes. It demonstrates the deep-learning method’s superiority in cases with limited camera views and calibration data, achieving high-quality reconstructions of semi-transparent smoke without p...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-11, Vol.2885 (1), p.012075 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study evaluates deep-learning and Shape from Silhouette (SfS) methods for 3D reconstruction of smoke plumes. It demonstrates the deep-learning method’s superiority in cases with limited camera views and calibration data, achieving high-quality reconstructions of semi-transparent smoke without precise calibration. The research emphasizes the significance of pre-processing and data appearance for neural network efficacy. By improving 3D reconstruction techniques, this work aids in advancing wildfire tracking and environmental analysis, offering a practical approach for real-world applications in fire science. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2885/1/012075 |