Estimation of 3D Shape and Volume of Fire Plumes from Multiple Views

This study evaluates deep-learning and Shape from Silhouette (SfS) methods for 3D reconstruction of smoke plumes. It demonstrates the deep-learning method’s superiority in cases with limited camera views and calibration data, achieving high-quality reconstructions of semi-transparent smoke without p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-11, Vol.2885 (1), p.012075
Hauptverfasser: Blanco, J A, Pardàs, M, Casas, J R, Paugam, R, Àgueda, A, Wagner, J, Parsons, R A, Planas, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study evaluates deep-learning and Shape from Silhouette (SfS) methods for 3D reconstruction of smoke plumes. It demonstrates the deep-learning method’s superiority in cases with limited camera views and calibration data, achieving high-quality reconstructions of semi-transparent smoke without precise calibration. The research emphasizes the significance of pre-processing and data appearance for neural network efficacy. By improving 3D reconstruction techniques, this work aids in advancing wildfire tracking and environmental analysis, offering a practical approach for real-world applications in fire science.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2885/1/012075