The q, t-symmetry of the generalized q, t-Catalan number C(k1,k2,k3)(q,t)
We present two distinct proofs of the q , t -symmetry for the generalized q , t -Catalan number C k → ( q , t ) , where k → = ( k 1 , k 2 , k 3 ) . The first proof is derived through the application of MacMahon’s partition analysis. The second proof is established via a direct bijection.
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2025-02, Vol.61 (1), Article 8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present two distinct proofs of the
q
,
t
-symmetry for the generalized
q
,
t
-Catalan number
C
k
→
(
q
,
t
)
, where
k
→
=
(
k
1
,
k
2
,
k
3
)
. The first proof is derived through the application of MacMahon’s partition analysis. The second proof is established via a direct bijection. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-024-01374-3 |