On ABS Estrada index of trees

Let G be a graph with n vertices, and d i be the degree of its i -th vertex. The ABS matrix of G is the square matrix of order n whose ( i ,  j )-entry is equal to ( d i + d j - 2 ) / ( d i + d j ) if the i -th vertex and the j -th vertex of G are adjacent, and 0 otherwise. Let ρ 1 ≥ ρ 2 ≥ ⋯ ≥ ρ n b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2024-12, Vol.70 (6), p.5483-5495
Hauptverfasser: Lin, Zhen, Zhou, Ting, Liu, Yingke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5495
container_issue 6
container_start_page 5483
container_title Journal of applied mathematics & computing
container_volume 70
creator Lin, Zhen
Zhou, Ting
Liu, Yingke
description Let G be a graph with n vertices, and d i be the degree of its i -th vertex. The ABS matrix of G is the square matrix of order n whose ( i ,  j )-entry is equal to ( d i + d j - 2 ) / ( d i + d j ) if the i -th vertex and the j -th vertex of G are adjacent, and 0 otherwise. Let ρ 1 ≥ ρ 2 ≥ ⋯ ≥ ρ n be the eigenvalues of the ABS matrix of G . Then the ABS Estrada index of G , denoted by E ABS ( G ) , is defined as E ABS ( G ) = ∑ i = 1 n e ρ i . In this paper, the chemical importance of the ABS Estrada index is investigated and it is shown that the predictive ability of ABS Estrada index is stronger than other connectivity Estrada indices (including Randić Estrada index, harmonic Estrada index and ABC Estrada index) and ABS index for octane isomers. Since chemical graphs of octane isomers are trees, we study the extremal problem of ABS Estrada index of trees, and prove that for any tree T n with n ≥ 3 vertices, E ABS ( P n ) ≤ E ABS ( T n ) ≤ E ABS ( K 1 , n - 1 ) with equality in the left (resp., right) inequality if and only if T n is isomorphic to the path P n (resp., the star K 1 , n - 1 ).
doi_str_mv 10.1007/s12190-024-02188-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3134326323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134326323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-86dc4da5a4a309779cd9a0f8c9ae30da4a44b16910f59fcb67c1003a1fe12eb03</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKt_QBAWfI7O5LKbPNZSL1Dog_ocsrlIi-7WZAvaX290Bd98GGY4nDMzfIScI1whQHOdkaEGCkyUQqXo_oBMUNWSMlDysMxSKyqLcExOct4A1I0GPSEXq66a3TxWizwk62217nz4qPpYDSmEfEqOon3N4ey3T8nz7eJpfk-Xq7uH-WxJHQMYqKq9E95KKywH3TTaeW0hKqdt4OCLLESLtUaIUkfX1o0rX3OLMSALLfApuRz3blP_vgt5MJt-l7py0nDkgrOaM15cbHS51OecQjTbtH6z6dMgmG8MZsRgCgbzg8HsS4iPoVzM3UtIf6v_SX0Bn8peDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134326323</pqid></control><display><type>article</type><title>On ABS Estrada index of trees</title><source>Springer Nature - Complete Springer Journals</source><creator>Lin, Zhen ; Zhou, Ting ; Liu, Yingke</creator><creatorcontrib>Lin, Zhen ; Zhou, Ting ; Liu, Yingke</creatorcontrib><description>Let G be a graph with n vertices, and d i be the degree of its i -th vertex. The ABS matrix of G is the square matrix of order n whose ( i ,  j )-entry is equal to ( d i + d j - 2 ) / ( d i + d j ) if the i -th vertex and the j -th vertex of G are adjacent, and 0 otherwise. Let ρ 1 ≥ ρ 2 ≥ ⋯ ≥ ρ n be the eigenvalues of the ABS matrix of G . Then the ABS Estrada index of G , denoted by E ABS ( G ) , is defined as E ABS ( G ) = ∑ i = 1 n e ρ i . In this paper, the chemical importance of the ABS Estrada index is investigated and it is shown that the predictive ability of ABS Estrada index is stronger than other connectivity Estrada indices (including Randić Estrada index, harmonic Estrada index and ABC Estrada index) and ABS index for octane isomers. Since chemical graphs of octane isomers are trees, we study the extremal problem of ABS Estrada index of trees, and prove that for any tree T n with n ≥ 3 vertices, E ABS ( P n ) ≤ E ABS ( T n ) ≤ E ABS ( K 1 , n - 1 ) with equality in the left (resp., right) inequality if and only if T n is isomorphic to the path P n (resp., the star K 1 , n - 1 ).</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-024-02188-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apexes ; Computational Mathematics and Numerical Analysis ; Eigenvalues ; Graph theory ; Isomers ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Original Research ; Theory of Computation ; Trees (mathematics)</subject><ispartof>Journal of applied mathematics &amp; computing, 2024-12, Vol.70 (6), p.5483-5495</ispartof><rights>The Author(s) under exclusive licence to Korean Society for Informatics and Computational Applied Mathematics 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-86dc4da5a4a309779cd9a0f8c9ae30da4a44b16910f59fcb67c1003a1fe12eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-024-02188-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-024-02188-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lin, Zhen</creatorcontrib><creatorcontrib>Zhou, Ting</creatorcontrib><creatorcontrib>Liu, Yingke</creatorcontrib><title>On ABS Estrada index of trees</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>Let G be a graph with n vertices, and d i be the degree of its i -th vertex. The ABS matrix of G is the square matrix of order n whose ( i ,  j )-entry is equal to ( d i + d j - 2 ) / ( d i + d j ) if the i -th vertex and the j -th vertex of G are adjacent, and 0 otherwise. Let ρ 1 ≥ ρ 2 ≥ ⋯ ≥ ρ n be the eigenvalues of the ABS matrix of G . Then the ABS Estrada index of G , denoted by E ABS ( G ) , is defined as E ABS ( G ) = ∑ i = 1 n e ρ i . In this paper, the chemical importance of the ABS Estrada index is investigated and it is shown that the predictive ability of ABS Estrada index is stronger than other connectivity Estrada indices (including Randić Estrada index, harmonic Estrada index and ABC Estrada index) and ABS index for octane isomers. Since chemical graphs of octane isomers are trees, we study the extremal problem of ABS Estrada index of trees, and prove that for any tree T n with n ≥ 3 vertices, E ABS ( P n ) ≤ E ABS ( T n ) ≤ E ABS ( K 1 , n - 1 ) with equality in the left (resp., right) inequality if and only if T n is isomorphic to the path P n (resp., the star K 1 , n - 1 ).</description><subject>Apexes</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Isomers</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Original Research</subject><subject>Theory of Computation</subject><subject>Trees (mathematics)</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKt_QBAWfI7O5LKbPNZSL1Dog_ocsrlIi-7WZAvaX290Bd98GGY4nDMzfIScI1whQHOdkaEGCkyUQqXo_oBMUNWSMlDysMxSKyqLcExOct4A1I0GPSEXq66a3TxWizwk62217nz4qPpYDSmEfEqOon3N4ey3T8nz7eJpfk-Xq7uH-WxJHQMYqKq9E95KKywH3TTaeW0hKqdt4OCLLESLtUaIUkfX1o0rX3OLMSALLfApuRz3blP_vgt5MJt-l7py0nDkgrOaM15cbHS51OecQjTbtH6z6dMgmG8MZsRgCgbzg8HsS4iPoVzM3UtIf6v_SX0Bn8peDg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Lin, Zhen</creator><creator>Zhou, Ting</creator><creator>Liu, Yingke</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241201</creationdate><title>On ABS Estrada index of trees</title><author>Lin, Zhen ; Zhou, Ting ; Liu, Yingke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-86dc4da5a4a309779cd9a0f8c9ae30da4a44b16910f59fcb67c1003a1fe12eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Isomers</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Original Research</topic><topic>Theory of Computation</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhen</creatorcontrib><creatorcontrib>Zhou, Ting</creatorcontrib><creatorcontrib>Liu, Yingke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhen</au><au>Zhou, Ting</au><au>Liu, Yingke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On ABS Estrada index of trees</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>70</volume><issue>6</issue><spage>5483</spage><epage>5495</epage><pages>5483-5495</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>Let G be a graph with n vertices, and d i be the degree of its i -th vertex. The ABS matrix of G is the square matrix of order n whose ( i ,  j )-entry is equal to ( d i + d j - 2 ) / ( d i + d j ) if the i -th vertex and the j -th vertex of G are adjacent, and 0 otherwise. Let ρ 1 ≥ ρ 2 ≥ ⋯ ≥ ρ n be the eigenvalues of the ABS matrix of G . Then the ABS Estrada index of G , denoted by E ABS ( G ) , is defined as E ABS ( G ) = ∑ i = 1 n e ρ i . In this paper, the chemical importance of the ABS Estrada index is investigated and it is shown that the predictive ability of ABS Estrada index is stronger than other connectivity Estrada indices (including Randić Estrada index, harmonic Estrada index and ABC Estrada index) and ABS index for octane isomers. Since chemical graphs of octane isomers are trees, we study the extremal problem of ABS Estrada index of trees, and prove that for any tree T n with n ≥ 3 vertices, E ABS ( P n ) ≤ E ABS ( T n ) ≤ E ABS ( K 1 , n - 1 ) with equality in the left (resp., right) inequality if and only if T n is isomorphic to the path P n (resp., the star K 1 , n - 1 ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-024-02188-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2024-12, Vol.70 (6), p.5483-5495
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_3134326323
source Springer Nature - Complete Springer Journals
subjects Apexes
Computational Mathematics and Numerical Analysis
Eigenvalues
Graph theory
Isomers
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Original Research
Theory of Computation
Trees (mathematics)
title On ABS Estrada index of trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20ABS%20Estrada%20index%20of%20trees&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Lin,%20Zhen&rft.date=2024-12-01&rft.volume=70&rft.issue=6&rft.spage=5483&rft.epage=5495&rft.pages=5483-5495&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-024-02188-z&rft_dat=%3Cproquest_cross%3E3134326323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134326323&rft_id=info:pmid/&rfr_iscdi=true