On ABS Estrada index of trees
Let G be a graph with n vertices, and d i be the degree of its i -th vertex. The ABS matrix of G is the square matrix of order n whose ( i , j )-entry is equal to ( d i + d j - 2 ) / ( d i + d j ) if the i -th vertex and the j -th vertex of G are adjacent, and 0 otherwise. Let ρ 1 ≥ ρ 2 ≥ ⋯ ≥ ρ n b...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2024-12, Vol.70 (6), p.5483-5495 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a graph with
n
vertices, and
d
i
be the degree of its
i
-th vertex. The
ABS
matrix of
G
is the square matrix of order
n
whose (
i
,
j
)-entry is equal to
(
d
i
+
d
j
-
2
)
/
(
d
i
+
d
j
)
if the
i
-th vertex and the
j
-th vertex of
G
are adjacent, and 0 otherwise. Let
ρ
1
≥
ρ
2
≥
⋯
≥
ρ
n
be the eigenvalues of the
ABS
matrix of
G
. Then the
ABS
Estrada index of
G
, denoted by
E
ABS
(
G
)
, is defined as
E
ABS
(
G
)
=
∑
i
=
1
n
e
ρ
i
. In this paper, the chemical importance of the
ABS
Estrada index is investigated and it is shown that the predictive ability of
ABS
Estrada index is stronger than other connectivity Estrada indices (including Randić Estrada index, harmonic Estrada index and
ABC
Estrada index) and
ABS
index for octane isomers. Since chemical graphs of octane isomers are trees, we study the extremal problem of
ABS
Estrada index of trees, and prove that for any tree
T
n
with
n
≥
3
vertices,
E
ABS
(
P
n
)
≤
E
ABS
(
T
n
)
≤
E
ABS
(
K
1
,
n
-
1
)
with equality in the left (resp., right) inequality if and only if
T
n
is isomorphic to the path
P
n
(resp., the star
K
1
,
n
-
1
). |
---|---|
ISSN: | 1598-5865 1865-2085 |
DOI: | 10.1007/s12190-024-02188-z |